Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest
We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for thr...
Gespeichert in:
Veröffentlicht in: | Fire (Basel, Switzerland) Switzerland), 2018-09, Vol.1 (2), p.28 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 28 |
container_title | Fire (Basel, Switzerland) |
container_volume | 1 |
creator | Johnston, Joshua Johnston, Lynn Wooster, Martin Brookes, Alison McFayden, Colin Cantin, Alan |
description | We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime. |
doi_str_mv | 10.3390/fire1020028 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_fire1020028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_fire1020028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</originalsourceid><addsrcrecordid>eNpNUDtPwzAYtBBIVKUTf8A7CviR51gKBaQIhlRijL44n1sjJ65sd-i_JxEMne50d7qTjpB7zh6lrNiTNh45E4yJ8oosRFbwJBdZdn3Bb8kqhB82RQSXeZEtyL6BiNaaiPQFI6po3EhrM5gIMw3UadqcumQDozueaTO4k-3Rm3FPv43t581AzUjjAemn8_FA18NkKxjps_MIlm4nCPGO3GiwAVf_uCS77etu857UX28fm3WdKFGwmChkKReoOEfGOsC0y3MNWEgGvCt5JaocBGCZVkL2Sk8qoK6ULnhV5CmXS_LwV6u8C8Gjbo_eDODPLWft_FJ78ZL8BV6rXCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Johnston, Joshua ; Johnston, Lynn ; Wooster, Martin ; Brookes, Alison ; McFayden, Colin ; Cantin, Alan</creator><creatorcontrib>Johnston, Joshua ; Johnston, Lynn ; Wooster, Martin ; Brookes, Alison ; McFayden, Colin ; Cantin, Alan</creatorcontrib><description>We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.</description><identifier>ISSN: 2571-6255</identifier><identifier>EISSN: 2571-6255</identifier><identifier>DOI: 10.3390/fire1020028</identifier><language>eng</language><ispartof>Fire (Basel, Switzerland), 2018-09, Vol.1 (2), p.28</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</citedby><cites>FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</cites><orcidid>0000-0001-6375-7949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Johnston, Joshua</creatorcontrib><creatorcontrib>Johnston, Lynn</creatorcontrib><creatorcontrib>Wooster, Martin</creatorcontrib><creatorcontrib>Brookes, Alison</creatorcontrib><creatorcontrib>McFayden, Colin</creatorcontrib><creatorcontrib>Cantin, Alan</creatorcontrib><title>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</title><title>Fire (Basel, Switzerland)</title><description>We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.</description><issn>2571-6255</issn><issn>2571-6255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNUDtPwzAYtBBIVKUTf8A7CviR51gKBaQIhlRijL44n1sjJ65sd-i_JxEMne50d7qTjpB7zh6lrNiTNh45E4yJ8oosRFbwJBdZdn3Bb8kqhB82RQSXeZEtyL6BiNaaiPQFI6po3EhrM5gIMw3UadqcumQDozueaTO4k-3Rm3FPv43t581AzUjjAemn8_FA18NkKxjps_MIlm4nCPGO3GiwAVf_uCS77etu857UX28fm3WdKFGwmChkKReoOEfGOsC0y3MNWEgGvCt5JaocBGCZVkL2Sk8qoK6ULnhV5CmXS_LwV6u8C8Gjbo_eDODPLWft_FJ78ZL8BV6rXCY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Johnston, Joshua</creator><creator>Johnston, Lynn</creator><creator>Wooster, Martin</creator><creator>Brookes, Alison</creator><creator>McFayden, Colin</creator><creator>Cantin, Alan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6375-7949</orcidid></search><sort><creationdate>20180901</creationdate><title>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</title><author>Johnston, Joshua ; Johnston, Lynn ; Wooster, Martin ; Brookes, Alison ; McFayden, Colin ; Cantin, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Joshua</creatorcontrib><creatorcontrib>Johnston, Lynn</creatorcontrib><creatorcontrib>Wooster, Martin</creatorcontrib><creatorcontrib>Brookes, Alison</creatorcontrib><creatorcontrib>McFayden, Colin</creatorcontrib><creatorcontrib>Cantin, Alan</creatorcontrib><collection>CrossRef</collection><jtitle>Fire (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Joshua</au><au>Johnston, Lynn</au><au>Wooster, Martin</au><au>Brookes, Alison</au><au>McFayden, Colin</au><au>Cantin, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</atitle><jtitle>Fire (Basel, Switzerland)</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>1</volume><issue>2</issue><spage>28</spage><pages>28-</pages><issn>2571-6255</issn><eissn>2571-6255</eissn><abstract>We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.</abstract><doi>10.3390/fire1020028</doi><orcidid>https://orcid.org/0000-0001-6375-7949</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2571-6255 |
ispartof | Fire (Basel, Switzerland), 2018-09, Vol.1 (2), p.28 |
issn | 2571-6255 2571-6255 |
language | eng |
recordid | cdi_crossref_primary_10_3390_fire1020028 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
title | Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20Detection%20Limitations%20of%20Sub-Canopy%20Smouldering%20Wildfires%20in%20the%20North%20American%20Boreal%20Forest&rft.jtitle=Fire%20(Basel,%20Switzerland)&rft.au=Johnston,%20Joshua&rft.date=2018-09-01&rft.volume=1&rft.issue=2&rft.spage=28&rft.pages=28-&rft.issn=2571-6255&rft.eissn=2571-6255&rft_id=info:doi/10.3390/fire1020028&rft_dat=%3Ccrossref%3E10_3390_fire1020028%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |