Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest

We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for thr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fire (Basel, Switzerland) Switzerland), 2018-09, Vol.1 (2), p.28
Hauptverfasser: Johnston, Joshua, Johnston, Lynn, Wooster, Martin, Brookes, Alison, McFayden, Colin, Cantin, Alan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 28
container_title Fire (Basel, Switzerland)
container_volume 1
creator Johnston, Joshua
Johnston, Lynn
Wooster, Martin
Brookes, Alison
McFayden, Colin
Cantin, Alan
description We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.
doi_str_mv 10.3390/fire1020028
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_fire1020028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_fire1020028</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</originalsourceid><addsrcrecordid>eNpNUDtPwzAYtBBIVKUTf8A7CviR51gKBaQIhlRijL44n1sjJ65sd-i_JxEMne50d7qTjpB7zh6lrNiTNh45E4yJ8oosRFbwJBdZdn3Bb8kqhB82RQSXeZEtyL6BiNaaiPQFI6po3EhrM5gIMw3UadqcumQDozueaTO4k-3Rm3FPv43t581AzUjjAemn8_FA18NkKxjps_MIlm4nCPGO3GiwAVf_uCS77etu857UX28fm3WdKFGwmChkKReoOEfGOsC0y3MNWEgGvCt5JaocBGCZVkL2Sk8qoK6ULnhV5CmXS_LwV6u8C8Gjbo_eDODPLWft_FJ78ZL8BV6rXCY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Johnston, Joshua ; Johnston, Lynn ; Wooster, Martin ; Brookes, Alison ; McFayden, Colin ; Cantin, Alan</creator><creatorcontrib>Johnston, Joshua ; Johnston, Lynn ; Wooster, Martin ; Brookes, Alison ; McFayden, Colin ; Cantin, Alan</creatorcontrib><description>We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.</description><identifier>ISSN: 2571-6255</identifier><identifier>EISSN: 2571-6255</identifier><identifier>DOI: 10.3390/fire1020028</identifier><language>eng</language><ispartof>Fire (Basel, Switzerland), 2018-09, Vol.1 (2), p.28</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</citedby><cites>FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</cites><orcidid>0000-0001-6375-7949</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Johnston, Joshua</creatorcontrib><creatorcontrib>Johnston, Lynn</creatorcontrib><creatorcontrib>Wooster, Martin</creatorcontrib><creatorcontrib>Brookes, Alison</creatorcontrib><creatorcontrib>McFayden, Colin</creatorcontrib><creatorcontrib>Cantin, Alan</creatorcontrib><title>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</title><title>Fire (Basel, Switzerland)</title><description>We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.</description><issn>2571-6255</issn><issn>2571-6255</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNUDtPwzAYtBBIVKUTf8A7CviR51gKBaQIhlRijL44n1sjJ65sd-i_JxEMne50d7qTjpB7zh6lrNiTNh45E4yJ8oosRFbwJBdZdn3Bb8kqhB82RQSXeZEtyL6BiNaaiPQFI6po3EhrM5gIMw3UadqcumQDozueaTO4k-3Rm3FPv43t581AzUjjAemn8_FA18NkKxjps_MIlm4nCPGO3GiwAVf_uCS77etu857UX28fm3WdKFGwmChkKReoOEfGOsC0y3MNWEgGvCt5JaocBGCZVkL2Sk8qoK6ULnhV5CmXS_LwV6u8C8Gjbo_eDODPLWft_FJ78ZL8BV6rXCY</recordid><startdate>20180901</startdate><enddate>20180901</enddate><creator>Johnston, Joshua</creator><creator>Johnston, Lynn</creator><creator>Wooster, Martin</creator><creator>Brookes, Alison</creator><creator>McFayden, Colin</creator><creator>Cantin, Alan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6375-7949</orcidid></search><sort><creationdate>20180901</creationdate><title>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</title><author>Johnston, Joshua ; Johnston, Lynn ; Wooster, Martin ; Brookes, Alison ; McFayden, Colin ; Cantin, Alan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-ce0412ec11e00bae4b66fae730a1b819296a2ae84923dcf0a1aef9cf71976413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnston, Joshua</creatorcontrib><creatorcontrib>Johnston, Lynn</creatorcontrib><creatorcontrib>Wooster, Martin</creatorcontrib><creatorcontrib>Brookes, Alison</creatorcontrib><creatorcontrib>McFayden, Colin</creatorcontrib><creatorcontrib>Cantin, Alan</creatorcontrib><collection>CrossRef</collection><jtitle>Fire (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnston, Joshua</au><au>Johnston, Lynn</au><au>Wooster, Martin</au><au>Brookes, Alison</au><au>McFayden, Colin</au><au>Cantin, Alan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest</atitle><jtitle>Fire (Basel, Switzerland)</jtitle><date>2018-09-01</date><risdate>2018</risdate><volume>1</volume><issue>2</issue><spage>28</spage><pages>28-</pages><issn>2571-6255</issn><eissn>2571-6255</eissn><abstract>We develop a simulation model for prediction of forest canopy interception of upwelling fire radiated energy from sub-canopy smouldering vegetation fires. We apply this model spatially across the North American boreal forest in order to map minimum detectable sub-canopy smouldering fire size for three satellite fire detection systems (sensor and algorithm), broadly representative of the Moderate Resolution Imaging Spectroradiometer (MODIS), Sea and Land Surface Temperature Radiometer (SLSTR) and Visible Infrared Imaging Radiometer Suite (VIIRS). We evaluate our results according to fire management requirements for “early detection” of wildland fires. In comparison to the historic fire archive (Canadian National Fire Database, 1980–2017), satellite data with a 1000 m pixel size used with an algorithm having a minimum MWIR channel BT elevation threshold of 5 and 3 K above background (e.g., MODIS or SLSTR) proves incapable of providing a sub-0.2 ha smouldering fire detection 70% and 45% of the time respectively, even assuming that the sensor overpassed the relevant location within the correct time window. By contrast, reducing the pixel area by an order of magnitude (e.g., 375 m pixels of VIIRS) and using a 3.5 K active fire detection threshold offers the potential for successfully detecting all fires when they are still below 0.2 ha. Our results represent a ‘theoretical best performance’ of remote sensing systems to detect sub-canopy smoldering fires early in their lifetime.</abstract><doi>10.3390/fire1020028</doi><orcidid>https://orcid.org/0000-0001-6375-7949</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2571-6255
ispartof Fire (Basel, Switzerland), 2018-09, Vol.1 (2), p.28
issn 2571-6255
2571-6255
language eng
recordid cdi_crossref_primary_10_3390_fire1020028
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
title Satellite Detection Limitations of Sub-Canopy Smouldering Wildfires in the North American Boreal Forest
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Satellite%20Detection%20Limitations%20of%20Sub-Canopy%20Smouldering%20Wildfires%20in%20the%20North%20American%20Boreal%20Forest&rft.jtitle=Fire%20(Basel,%20Switzerland)&rft.au=Johnston,%20Joshua&rft.date=2018-09-01&rft.volume=1&rft.issue=2&rft.spage=28&rft.pages=28-&rft.issn=2571-6255&rft.eissn=2571-6255&rft_id=info:doi/10.3390/fire1020028&rft_dat=%3Ccrossref%3E10_3390_fire1020028%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true