Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems
The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or l...
Gespeichert in:
Veröffentlicht in: | Energies (Basel) 2021-10, Vol.14 (20), p.6584, Article 6584 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | 6584 |
container_title | Energies (Basel) |
container_volume | 14 |
creator | Janarthanan, Ramadoss Maheshwari, R. Uma Shukla, Prashant Kumar Shukla, Piyush Kumar Mirjalili, Seyedali Kumar, Manoj |
description | The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured for productive actions in applications for a PV fault analysis, and choice is typically applied. The methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable characteristics that will be extremely useful in many functional applications. The result demonstrates that specific fault categories can be detected using the fault identification method, such as damaged PV modules and partial PV unit shades. The average detection performance is similar in both ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with radial basic function, including the roles of the output port and the rules for identifying the type of defect in the PV structure is slightly different. |
doi_str_mv | 10.3390/en14206584 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_en14206584</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_4285d2ee83ad493699016b50be83fd46</doaj_id><sourcerecordid>2584392440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-8f48d25315b816def01a8c51630a846b5f4bf057ea4fa3f87fd1d9df28bb03cb3</originalsourceid><addsrcrecordid>eNqNkU1vEzEQhlcIJKq2F36BJW6gUNvjdbzHEghEqgCJwtXyx7g4bNfB9qpKfz1OgwpHfBlr5pl3RvN23QtG3wAM9AInJjiVvRJPuhM2DHLB6BKe_vN_3p2XsqXtATAAOOnsZqo4jvEGp0reYUVXY5pICqT-QPLlO1mbeayFvDUFPWmVy1xjiC6akXzCOT-EepfyT2ImT673OyScrOf7-z35ui8Vb8tZ9yyYseD5n3jafVu_v159XFx9_rBZXV4tHEhWFyoI5XkPrLeKSY-BMqNczyRQo4S0fRA20H6JRgQDQS2DZ37wgStrKTgLp93mqOuT2epdjrcm73UyUT8kUr7Rpi3vRtSCq95zRAXGiwHkMFDWJlDbMsEL2bReHrV2Of2asVS9TXOe2vqat_vCwIWgjXp1pFxOpWQMj1MZ1QdL9F9LGvz6CN-hTaG4iJPDx4ZmyZJJJjkc3GGNVv9Pr2I1B9tWaZ4q_AazoJ1E</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2584392440</pqid></control><display><type>article</type><title>Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Janarthanan, Ramadoss ; Maheshwari, R. Uma ; Shukla, Prashant Kumar ; Shukla, Piyush Kumar ; Mirjalili, Seyedali ; Kumar, Manoj</creator><creatorcontrib>Janarthanan, Ramadoss ; Maheshwari, R. Uma ; Shukla, Prashant Kumar ; Shukla, Piyush Kumar ; Mirjalili, Seyedali ; Kumar, Manoj</creatorcontrib><description>The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured for productive actions in applications for a PV fault analysis, and choice is typically applied. The methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable characteristics that will be extremely useful in many functional applications. The result demonstrates that specific fault categories can be detected using the fault identification method, such as damaged PV modules and partial PV unit shades. The average detection performance is similar in both ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with radial basic function, including the roles of the output port and the rules for identifying the type of defect in the PV structure is slightly different.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en14206584</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Algorithms ; Arrays ; artificial neural network ; Efficiency ; Electricity ; Energy & Fuels ; Fault detection ; Fuzzy logic ; Fuzzy systems ; Identification methods ; Machine learning ; Methods ; Neural networks ; photovoltaic (PV) fault detection ; Photovoltaic cells ; Photovoltaics ; Radiation ; Science & Technology ; Shades ; Systems analysis ; Technology ; type 2 fuzzy logic systems</subject><ispartof>Energies (Basel), 2021-10, Vol.14 (20), p.6584, Article 6584</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>34</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000716162300001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c361t-8f48d25315b816def01a8c51630a846b5f4bf057ea4fa3f87fd1d9df28bb03cb3</citedby><cites>FETCH-LOGICAL-c361t-8f48d25315b816def01a8c51630a846b5f4bf057ea4fa3f87fd1d9df28bb03cb3</cites><orcidid>0000-0003-1587-634X ; 0000-0002-1443-9458 ; 0000-0001-5113-0639 ; 0000-0002-3092-2415 ; 0000-0002-3715-3882</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,865,2103,2115,27929,27930,39263</link.rule.ids></links><search><creatorcontrib>Janarthanan, Ramadoss</creatorcontrib><creatorcontrib>Maheshwari, R. Uma</creatorcontrib><creatorcontrib>Shukla, Prashant Kumar</creatorcontrib><creatorcontrib>Shukla, Piyush Kumar</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><title>Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems</title><title>Energies (Basel)</title><addtitle>ENERGIES</addtitle><description>The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured for productive actions in applications for a PV fault analysis, and choice is typically applied. The methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable characteristics that will be extremely useful in many functional applications. The result demonstrates that specific fault categories can be detected using the fault identification method, such as damaged PV modules and partial PV unit shades. The average detection performance is similar in both ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with radial basic function, including the roles of the output port and the rules for identifying the type of defect in the PV structure is slightly different.</description><subject>Algorithms</subject><subject>Arrays</subject><subject>artificial neural network</subject><subject>Efficiency</subject><subject>Electricity</subject><subject>Energy & Fuels</subject><subject>Fault detection</subject><subject>Fuzzy logic</subject><subject>Fuzzy systems</subject><subject>Identification methods</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Neural networks</subject><subject>photovoltaic (PV) fault detection</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Radiation</subject><subject>Science & Technology</subject><subject>Shades</subject><subject>Systems analysis</subject><subject>Technology</subject><subject>type 2 fuzzy logic systems</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNqNkU1vEzEQhlcIJKq2F36BJW6gUNvjdbzHEghEqgCJwtXyx7g4bNfB9qpKfz1OgwpHfBlr5pl3RvN23QtG3wAM9AInJjiVvRJPuhM2DHLB6BKe_vN_3p2XsqXtATAAOOnsZqo4jvEGp0reYUVXY5pICqT-QPLlO1mbeayFvDUFPWmVy1xjiC6akXzCOT-EepfyT2ImT673OyScrOf7-z35ui8Vb8tZ9yyYseD5n3jafVu_v159XFx9_rBZXV4tHEhWFyoI5XkPrLeKSY-BMqNczyRQo4S0fRA20H6JRgQDQS2DZ37wgStrKTgLp93mqOuT2epdjrcm73UyUT8kUr7Rpi3vRtSCq95zRAXGiwHkMFDWJlDbMsEL2bReHrV2Of2asVS9TXOe2vqat_vCwIWgjXp1pFxOpWQMj1MZ1QdL9F9LGvz6CN-hTaG4iJPDx4ZmyZJJJjkc3GGNVv9Pr2I1B9tWaZ4q_AazoJ1E</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Janarthanan, Ramadoss</creator><creator>Maheshwari, R. Uma</creator><creator>Shukla, Prashant Kumar</creator><creator>Shukla, Piyush Kumar</creator><creator>Mirjalili, Seyedali</creator><creator>Kumar, Manoj</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1587-634X</orcidid><orcidid>https://orcid.org/0000-0002-1443-9458</orcidid><orcidid>https://orcid.org/0000-0001-5113-0639</orcidid><orcidid>https://orcid.org/0000-0002-3092-2415</orcidid><orcidid>https://orcid.org/0000-0002-3715-3882</orcidid></search><sort><creationdate>20211001</creationdate><title>Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems</title><author>Janarthanan, Ramadoss ; Maheshwari, R. Uma ; Shukla, Prashant Kumar ; Shukla, Piyush Kumar ; Mirjalili, Seyedali ; Kumar, Manoj</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-8f48d25315b816def01a8c51630a846b5f4bf057ea4fa3f87fd1d9df28bb03cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Arrays</topic><topic>artificial neural network</topic><topic>Efficiency</topic><topic>Electricity</topic><topic>Energy & Fuels</topic><topic>Fault detection</topic><topic>Fuzzy logic</topic><topic>Fuzzy systems</topic><topic>Identification methods</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Neural networks</topic><topic>photovoltaic (PV) fault detection</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Radiation</topic><topic>Science & Technology</topic><topic>Shades</topic><topic>Systems analysis</topic><topic>Technology</topic><topic>type 2 fuzzy logic systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janarthanan, Ramadoss</creatorcontrib><creatorcontrib>Maheshwari, R. Uma</creatorcontrib><creatorcontrib>Shukla, Prashant Kumar</creatorcontrib><creatorcontrib>Shukla, Piyush Kumar</creatorcontrib><creatorcontrib>Mirjalili, Seyedali</creatorcontrib><creatorcontrib>Kumar, Manoj</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janarthanan, Ramadoss</au><au>Maheshwari, R. Uma</au><au>Shukla, Prashant Kumar</au><au>Shukla, Piyush Kumar</au><au>Mirjalili, Seyedali</au><au>Kumar, Manoj</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems</atitle><jtitle>Energies (Basel)</jtitle><stitle>ENERGIES</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>14</volume><issue>20</issue><spage>6584</spage><pages>6584-</pages><artnum>6584</artnum><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>The real-time application research on the Fuzzy Logic Systems (FLSs) and Artificial Neural Networks (ANN) is vast and, in this paper, a technique for a photovoltaic failure analysis using the type 2 FLS and ANN is proposed. The method is proposed to build T2 FLS with a guaranteed value equal to or lower than T2 and ANN. Several explanations are conducted to illustrate the effectiveness of the methodologies. It is found that both the type 2 Fuzzy and ANN can be configured for productive actions in applications for a PV fault analysis, and choice is typically applied. The methods discussed in this paper lay the groundwork for developing FLSs and ANNs with durable characteristics that will be extremely useful in many functional applications. The result demonstrates that specific fault categories can be detected using the fault identification method, such as damaged PV modules and partial PV unit shades. The average detection performance is similar in both ANN and fuzzy techniques. In comparison, both systems evaluated show approximately the same performance during experiments. The architecture of the type 2 fuzzy logic system and ANN with radial basic function, including the roles of the output port and the rules for identifying the type of defect in the PV structure is slightly different.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/en14206584</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0003-1587-634X</orcidid><orcidid>https://orcid.org/0000-0002-1443-9458</orcidid><orcidid>https://orcid.org/0000-0001-5113-0639</orcidid><orcidid>https://orcid.org/0000-0002-3092-2415</orcidid><orcidid>https://orcid.org/0000-0002-3715-3882</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2021-10, Vol.14 (20), p.6584, Article 6584 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_crossref_primary_10_3390_en14206584 |
source | DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Arrays artificial neural network Efficiency Electricity Energy & Fuels Fault detection Fuzzy logic Fuzzy systems Identification methods Machine learning Methods Neural networks photovoltaic (PV) fault detection Photovoltaic cells Photovoltaics Radiation Science & Technology Shades Systems analysis Technology type 2 fuzzy logic systems |
title | Intelligent Detection of the PV Faults Based on Artificial Neural Network and Type 2 Fuzzy Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T23%3A56%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Detection%20of%20the%20PV%20Faults%20Based%20on%20Artificial%20Neural%20Network%20and%20Type%202%20Fuzzy%20Systems&rft.jtitle=Energies%20(Basel)&rft.au=Janarthanan,%20Ramadoss&rft.date=2021-10-01&rft.volume=14&rft.issue=20&rft.spage=6584&rft.pages=6584-&rft.artnum=6584&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en14206584&rft_dat=%3Cproquest_cross%3E2584392440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2584392440&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_4285d2ee83ad493699016b50be83fd46&rfr_iscdi=true |