Simulation Modeling of a Photovoltaic-Green Roof System for Energy Cost Reduction of a Building: Texas Case Study

This study aims at introducing a modeling and simulation approach for a green roof system which can reduce energy cost of a building exposed to high temperatures throughout the summer season. First, to understand thermal impact of a green roof system on a building surface, a field-based study has be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energies (Basel) 2021-09, Vol.14 (17), p.5443, Article 5443
Hauptverfasser: Kim, Sojung, Aydin, Burchan, Kim, Sumin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study aims at introducing a modeling and simulation approach for a green roof system which can reduce energy cost of a building exposed to high temperatures throughout the summer season. First, to understand thermal impact of a green roof system on a building surface, a field-based study has been conducted in Commerce, Texas, U.S., where the average maximum temperature in summer is 104 degrees F (40 degrees C). Two types of analyses were conducted: (1) comparison of temperature between different plant type via Analysis of variance (ANOVA) and (2) polynomial regression analysis to develop thermal impact estimation model based on air temperature and presence of a green roof. In addition, an agent-based simulation (ABS) model was developed via AnyLogic(R) University 8.6.0 simulation software, Chicago, IL, U.S., in order to accurately estimate energy cost and benefits of a building with a photovoltaic-green roof system. The proposed approach was applied to estimate energy reduction cost of the Keith D. McFarland Science Building at Texas A&M University, Commerce, Texas (33.2410 degrees N, 95.9104 degrees W). As a result, the proposed approach was able to save $740,325.44 in energy cost of a heating, ventilation, and air conditioning (HAVC) system in the subject building. The proposed approach will contribute to the implementation of a sustainable building and urban agriculture.
ISSN:1996-1073
1996-1073
DOI:10.3390/en14175443