Dirt Loss Estimator for Photovoltaic Modules Using Model Predictive Control
The central problem tackled in this article is the susceptibility of the solar modules to dirt that culminates in losses in energy generation or even physical damage. In this context, a solution is presented to enable the estimates of dirt losses in photovoltaic generation units. The proposed soluti...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2021-07, Vol.10 (14), p.1738, Article 1738 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 1738 |
container_title | Electronics (Basel) |
container_volume | 10 |
creator | Santos, Ricardo R. Batista, Edson A. de Brito, Moacyr A. G. Quinelato, David D. D. |
description | The central problem tackled in this article is the susceptibility of the solar modules to dirt that culminates in losses in energy generation or even physical damage. In this context, a solution is presented to enable the estimates of dirt losses in photovoltaic generation units. The proposed solution is based on the mathematical modeling of the solar cells and predictive modeling concepts. A device was designed and developed to acquire data from the photovoltaic unit; process them based on a predictive model, and send loss estimates in the generation unit to a web server to help in decision-making support. The results demonstrated the real applicability of the system to estimate losses due to dirt or electrical mismatches in photovoltaic plants. |
doi_str_mv | 10.3390/electronics10141738 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_electronics10141738</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2554494063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-666aa33284cac0f299ccb69365886a6480cfbe07d9f33d2baa376de1d9577893</originalsourceid><addsrcrecordid>eNqNkE1LxDAQhoMouKz7C7wUPEo1ybRpcpS6fuCKe1jPJU0TzVKbNUlX_PdmWREPHgwMmYH3mY8XoVOCLwAEvtS9VtG7wapAMClIBfwATSiuRC6ooIe_8mM0C2GN0xMEOOAJeri2PmYLF0I2D9G-yeh8ZlIsX110W9dHaVX26Lqx1yF7DnZ42VW6z5Zed1ZFu9VZ7Ya0QH-Cjozsg559_1O0upmv6rt88XR7X18tcgWUxpwxJiUA5YWSChsqhFItE8BKzplkBcfKtBpXnTAAHW2TuGKdJp0oq4oLmKKzfduNd--jDrFZu9EPaWJDy7IoRIEZJBXsVcqn47w2zcan8_xnQ3Cz8635w7dE8T31oVtngrJ6UPqHTL6xitGSFDsLSW2jjNYNtRuHmNDz_6PwBVkvhFM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2554494063</pqid></control><display><type>article</type><title>Dirt Loss Estimator for Photovoltaic Modules Using Model Predictive Control</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Santos, Ricardo R. ; Batista, Edson A. ; de Brito, Moacyr A. G. ; Quinelato, David D. D.</creator><creatorcontrib>Santos, Ricardo R. ; Batista, Edson A. ; de Brito, Moacyr A. G. ; Quinelato, David D. D.</creatorcontrib><description>The central problem tackled in this article is the susceptibility of the solar modules to dirt that culminates in losses in energy generation or even physical damage. In this context, a solution is presented to enable the estimates of dirt losses in photovoltaic generation units. The proposed solution is based on the mathematical modeling of the solar cells and predictive modeling concepts. A device was designed and developed to acquire data from the photovoltaic unit; process them based on a predictive model, and send loss estimates in the generation unit to a web server to help in decision-making support. The results demonstrated the real applicability of the system to estimate losses due to dirt or electrical mismatches in photovoltaic plants.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics10141738</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Cadmium telluride ; Computer Science ; Computer Science, Information Systems ; Decision making ; Dirt ; Efficiency ; Engineering ; Engineering, Electrical & Electronic ; Estimates ; Modules ; Photovoltaic cells ; Physical Sciences ; Physics ; Physics, Applied ; Prediction models ; Predictive control ; Radiation ; Science & Technology ; Solar cells ; Solar energy ; Technology</subject><ispartof>Electronics (Basel), 2021-07, Vol.10 (14), p.1738, Article 1738</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>3</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000676251400001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c322t-666aa33284cac0f299ccb69365886a6480cfbe07d9f33d2baa376de1d9577893</citedby><cites>FETCH-LOGICAL-c322t-666aa33284cac0f299ccb69365886a6480cfbe07d9f33d2baa376de1d9577893</cites><orcidid>0000-0002-2955-8011 ; 0000-0003-4902-409X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Santos, Ricardo R.</creatorcontrib><creatorcontrib>Batista, Edson A.</creatorcontrib><creatorcontrib>de Brito, Moacyr A. G.</creatorcontrib><creatorcontrib>Quinelato, David D. D.</creatorcontrib><title>Dirt Loss Estimator for Photovoltaic Modules Using Model Predictive Control</title><title>Electronics (Basel)</title><addtitle>ELECTRONICS-SWITZ</addtitle><description>The central problem tackled in this article is the susceptibility of the solar modules to dirt that culminates in losses in energy generation or even physical damage. In this context, a solution is presented to enable the estimates of dirt losses in photovoltaic generation units. The proposed solution is based on the mathematical modeling of the solar cells and predictive modeling concepts. A device was designed and developed to acquire data from the photovoltaic unit; process them based on a predictive model, and send loss estimates in the generation unit to a web server to help in decision-making support. The results demonstrated the real applicability of the system to estimate losses due to dirt or electrical mismatches in photovoltaic plants.</description><subject>Cadmium telluride</subject><subject>Computer Science</subject><subject>Computer Science, Information Systems</subject><subject>Decision making</subject><subject>Dirt</subject><subject>Efficiency</subject><subject>Engineering</subject><subject>Engineering, Electrical & Electronic</subject><subject>Estimates</subject><subject>Modules</subject><subject>Photovoltaic cells</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Applied</subject><subject>Prediction models</subject><subject>Predictive control</subject><subject>Radiation</subject><subject>Science & Technology</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Technology</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkE1LxDAQhoMouKz7C7wUPEo1ybRpcpS6fuCKe1jPJU0TzVKbNUlX_PdmWREPHgwMmYH3mY8XoVOCLwAEvtS9VtG7wapAMClIBfwATSiuRC6ooIe_8mM0C2GN0xMEOOAJeri2PmYLF0I2D9G-yeh8ZlIsX110W9dHaVX26Lqx1yF7DnZ42VW6z5Zed1ZFu9VZ7Ya0QH-Cjozsg559_1O0upmv6rt88XR7X18tcgWUxpwxJiUA5YWSChsqhFItE8BKzplkBcfKtBpXnTAAHW2TuGKdJp0oq4oLmKKzfduNd--jDrFZu9EPaWJDy7IoRIEZJBXsVcqn47w2zcan8_xnQ3Cz8635w7dE8T31oVtngrJ6UPqHTL6xitGSFDsLSW2jjNYNtRuHmNDz_6PwBVkvhFM</recordid><startdate>20210719</startdate><enddate>20210719</enddate><creator>Santos, Ricardo R.</creator><creator>Batista, Edson A.</creator><creator>de Brito, Moacyr A. G.</creator><creator>Quinelato, David D. D.</creator><general>Mdpi</general><general>MDPI AG</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2955-8011</orcidid><orcidid>https://orcid.org/0000-0003-4902-409X</orcidid></search><sort><creationdate>20210719</creationdate><title>Dirt Loss Estimator for Photovoltaic Modules Using Model Predictive Control</title><author>Santos, Ricardo R. ; Batista, Edson A. ; de Brito, Moacyr A. G. ; Quinelato, David D. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-666aa33284cac0f299ccb69365886a6480cfbe07d9f33d2baa376de1d9577893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cadmium telluride</topic><topic>Computer Science</topic><topic>Computer Science, Information Systems</topic><topic>Decision making</topic><topic>Dirt</topic><topic>Efficiency</topic><topic>Engineering</topic><topic>Engineering, Electrical & Electronic</topic><topic>Estimates</topic><topic>Modules</topic><topic>Photovoltaic cells</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Applied</topic><topic>Prediction models</topic><topic>Predictive control</topic><topic>Radiation</topic><topic>Science & Technology</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santos, Ricardo R.</creatorcontrib><creatorcontrib>Batista, Edson A.</creatorcontrib><creatorcontrib>de Brito, Moacyr A. G.</creatorcontrib><creatorcontrib>Quinelato, David D. D.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Ricardo R.</au><au>Batista, Edson A.</au><au>de Brito, Moacyr A. G.</au><au>Quinelato, David D. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dirt Loss Estimator for Photovoltaic Modules Using Model Predictive Control</atitle><jtitle>Electronics (Basel)</jtitle><stitle>ELECTRONICS-SWITZ</stitle><date>2021-07-19</date><risdate>2021</risdate><volume>10</volume><issue>14</issue><spage>1738</spage><pages>1738-</pages><artnum>1738</artnum><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>The central problem tackled in this article is the susceptibility of the solar modules to dirt that culminates in losses in energy generation or even physical damage. In this context, a solution is presented to enable the estimates of dirt losses in photovoltaic generation units. The proposed solution is based on the mathematical modeling of the solar cells and predictive modeling concepts. A device was designed and developed to acquire data from the photovoltaic unit; process them based on a predictive model, and send loss estimates in the generation unit to a web server to help in decision-making support. The results demonstrated the real applicability of the system to estimate losses due to dirt or electrical mismatches in photovoltaic plants.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/electronics10141738</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-2955-8011</orcidid><orcidid>https://orcid.org/0000-0003-4902-409X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2021-07, Vol.10 (14), p.1738, Article 1738 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_crossref_primary_10_3390_electronics10141738 |
source | MDPI - Multidisciplinary Digital Publishing Institute; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals |
subjects | Cadmium telluride Computer Science Computer Science, Information Systems Decision making Dirt Efficiency Engineering Engineering, Electrical & Electronic Estimates Modules Photovoltaic cells Physical Sciences Physics Physics, Applied Prediction models Predictive control Radiation Science & Technology Solar cells Solar energy Technology |
title | Dirt Loss Estimator for Photovoltaic Modules Using Model Predictive Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T08%3A46%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dirt%20Loss%20Estimator%20for%20Photovoltaic%20Modules%20Using%20Model%20Predictive%20Control&rft.jtitle=Electronics%20(Basel)&rft.au=Santos,%20Ricardo%20R.&rft.date=2021-07-19&rft.volume=10&rft.issue=14&rft.spage=1738&rft.pages=1738-&rft.artnum=1738&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics10141738&rft_dat=%3Cproquest_cross%3E2554494063%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2554494063&rft_id=info:pmid/&rfr_iscdi=true |