Inconsistencies in Modeling Impact with Friction by Algebraic Equations

This paper is concerned with inconsistent results that can be obtained when modeling rigid body collisions via algebraic equations. Newton’s approach is kinematic and fails in several cases. Poisson’s formulation has been shown lead to energetic inconsistencies, particularly in work done by the impu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dynamics 2022-12, Vol.2 (4), p.434-448
1. Verfasser: Baruh, Haim
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 448
container_issue 4
container_start_page 434
container_title Dynamics
container_volume 2
creator Baruh, Haim
description This paper is concerned with inconsistent results that can be obtained when modeling rigid body collisions via algebraic equations. Newton’s approach is kinematic and fails in several cases. Poisson’s formulation has been shown lead to energetic inconsistencies, particularly in work done by the impulsive forces. This paper shows that the energetic formulation may lead to unexpected results in the magnitudes of the impulsive forces. These inconsistencies are due to the simplifying assumptions made to model collisions as occurring instantaneously. The inconsistencies increase as friction in the system becomes higher. We propose an optimization procedure for solving the algebraic equations of impact so that inconsistencies are minimized. Using experimental results, we present a discussion about the coefficients of restitution and friction.
doi_str_mv 10.3390/dynamics2040025
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_dynamics2040025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_dynamics2040025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-fcf0933e2ede6e5f377c1017808a1f26b08f910f9bdc65dfd61c2f81f65915f93</originalsourceid><addsrcrecordid>eNpdkLFOwzAURS0EElXpzOofCH22iWOPVdWWSkUsMEfOs18xSpwSB6H8PVQwIKZ7dXV0h8PYrYA7pSws_ZRcFzFLuAeQ5QWbSV2pwlRCX_7p12yR8xt8I8Yqo8WM7fYJ-5RjHkPCGDKPiT_2PrQxHfm-Ozkc-WccX_l2iDjGPvFm4qv2GJrBReSb9w93XvMNuyLX5rD4zTl72W6e1w_F4Wm3X68OBUqlx4KQwCoVZPBBh5JUVaEAURkwTpDUDRiyAsg2HnXpyWuBkowgXVpRklVztvz5xaHPeQhUn4bYuWGqBdRnFfU_FeoLlXNUOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Inconsistencies in Modeling Impact with Friction by Algebraic Equations</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Baruh, Haim</creator><creatorcontrib>Baruh, Haim</creatorcontrib><description>This paper is concerned with inconsistent results that can be obtained when modeling rigid body collisions via algebraic equations. Newton’s approach is kinematic and fails in several cases. Poisson’s formulation has been shown lead to energetic inconsistencies, particularly in work done by the impulsive forces. This paper shows that the energetic formulation may lead to unexpected results in the magnitudes of the impulsive forces. These inconsistencies are due to the simplifying assumptions made to model collisions as occurring instantaneously. The inconsistencies increase as friction in the system becomes higher. We propose an optimization procedure for solving the algebraic equations of impact so that inconsistencies are minimized. Using experimental results, we present a discussion about the coefficients of restitution and friction.</description><identifier>ISSN: 2673-8716</identifier><identifier>EISSN: 2673-8716</identifier><identifier>DOI: 10.3390/dynamics2040025</identifier><language>eng</language><ispartof>Dynamics, 2022-12, Vol.2 (4), p.434-448</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-fcf0933e2ede6e5f377c1017808a1f26b08f910f9bdc65dfd61c2f81f65915f93</cites><orcidid>0000-0001-7561-8815</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,27933,27934</link.rule.ids></links><search><creatorcontrib>Baruh, Haim</creatorcontrib><title>Inconsistencies in Modeling Impact with Friction by Algebraic Equations</title><title>Dynamics</title><description>This paper is concerned with inconsistent results that can be obtained when modeling rigid body collisions via algebraic equations. Newton’s approach is kinematic and fails in several cases. Poisson’s formulation has been shown lead to energetic inconsistencies, particularly in work done by the impulsive forces. This paper shows that the energetic formulation may lead to unexpected results in the magnitudes of the impulsive forces. These inconsistencies are due to the simplifying assumptions made to model collisions as occurring instantaneously. The inconsistencies increase as friction in the system becomes higher. We propose an optimization procedure for solving the algebraic equations of impact so that inconsistencies are minimized. Using experimental results, we present a discussion about the coefficients of restitution and friction.</description><issn>2673-8716</issn><issn>2673-8716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkLFOwzAURS0EElXpzOofCH22iWOPVdWWSkUsMEfOs18xSpwSB6H8PVQwIKZ7dXV0h8PYrYA7pSws_ZRcFzFLuAeQ5QWbSV2pwlRCX_7p12yR8xt8I8Yqo8WM7fYJ-5RjHkPCGDKPiT_2PrQxHfm-Ozkc-WccX_l2iDjGPvFm4qv2GJrBReSb9w93XvMNuyLX5rD4zTl72W6e1w_F4Wm3X68OBUqlx4KQwCoVZPBBh5JUVaEAURkwTpDUDRiyAsg2HnXpyWuBkowgXVpRklVztvz5xaHPeQhUn4bYuWGqBdRnFfU_FeoLlXNUOA</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Baruh, Haim</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7561-8815</orcidid></search><sort><creationdate>20221201</creationdate><title>Inconsistencies in Modeling Impact with Friction by Algebraic Equations</title><author>Baruh, Haim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-fcf0933e2ede6e5f377c1017808a1f26b08f910f9bdc65dfd61c2f81f65915f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baruh, Haim</creatorcontrib><collection>CrossRef</collection><jtitle>Dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baruh, Haim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inconsistencies in Modeling Impact with Friction by Algebraic Equations</atitle><jtitle>Dynamics</jtitle><date>2022-12-01</date><risdate>2022</risdate><volume>2</volume><issue>4</issue><spage>434</spage><epage>448</epage><pages>434-448</pages><issn>2673-8716</issn><eissn>2673-8716</eissn><abstract>This paper is concerned with inconsistent results that can be obtained when modeling rigid body collisions via algebraic equations. Newton’s approach is kinematic and fails in several cases. Poisson’s formulation has been shown lead to energetic inconsistencies, particularly in work done by the impulsive forces. This paper shows that the energetic formulation may lead to unexpected results in the magnitudes of the impulsive forces. These inconsistencies are due to the simplifying assumptions made to model collisions as occurring instantaneously. The inconsistencies increase as friction in the system becomes higher. We propose an optimization procedure for solving the algebraic equations of impact so that inconsistencies are minimized. Using experimental results, we present a discussion about the coefficients of restitution and friction.</abstract><doi>10.3390/dynamics2040025</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-7561-8815</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-8716
ispartof Dynamics, 2022-12, Vol.2 (4), p.434-448
issn 2673-8716
2673-8716
language eng
recordid cdi_crossref_primary_10_3390_dynamics2040025
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute
title Inconsistencies in Modeling Impact with Friction by Algebraic Equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T00%3A31%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inconsistencies%20in%20Modeling%20Impact%20with%20Friction%20by%20Algebraic%20Equations&rft.jtitle=Dynamics&rft.au=Baruh,%20Haim&rft.date=2022-12-01&rft.volume=2&rft.issue=4&rft.spage=434&rft.epage=448&rft.pages=434-448&rft.issn=2673-8716&rft.eissn=2673-8716&rft_id=info:doi/10.3390/dynamics2040025&rft_dat=%3Ccrossref%3E10_3390_dynamics2040025%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true