Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation
Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Pa...
Gespeichert in:
Veröffentlicht in: | Crystals (Basel) 2020-04, Vol.10 (4), p.271 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | 271 |
container_title | Crystals (Basel) |
container_volume | 10 |
creator | Queraltó, Albert György, Enikö Ivan, Raluca Pérez del Pino, Ángel Frohnhoven, Robert Mathur, Sanjay |
description | Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3. |
doi_str_mv | 10.3390/cryst10040271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_cryst10040271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_204de8f5c17a459196f7ca1a9eb3b863</doaj_id><sourcerecordid>2387068877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</originalsourceid><addsrcrecordid>eNpVUcFqGzEQXUILDYmPvS_kvI202l1JxxDsNGDiEGpfxaw0a8vYq-1oXeov6G9XtkNp5jLDmzfvDbws-8rZNyE0u7d0jCNnrGKl5FfZdcmkKCpRl5_-m79kkxi3LJVsmJT8Ovsz7TfQW3T5clWsfMxfN2EMDtcEDkYf-jx0-Qv0wYb9EKIfMX9DdzgdPBEMG-wxX_z2Du9nSHRan8idb5Hymd_tkyDhAJT47TGfQ0QqHmL0cUzI9BcMgc42t9nnDnYRJ-_9JlvOpj8evxfzxdPz48O8sEKysdC6FVa1WnFhnbYts9jVChNolW0c46VmWCvAFqwoERvoEKrWNlhDqUUlbrLni64LsDUD-T3Q0QTw5gwEWhug0dsdmpJVDlVXWy6hqjXXTSctcNDJrlWNSFp3F62Bws8DxtFsw4H69L4phZKsUUrKxCouLEshRsLunytn5hSd-RCd-AsXDo93</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387068877</pqid></control><display><type>article</type><title>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Queraltó, Albert ; György, Enikö ; Ivan, Raluca ; Pérez del Pino, Ángel ; Frohnhoven, Robert ; Mathur, Sanjay</creator><creatorcontrib>Queraltó, Albert ; György, Enikö ; Ivan, Raluca ; Pérez del Pino, Ángel ; Frohnhoven, Robert ; Mathur, Sanjay</creatorcontrib><description>Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst10040271</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bismuth ferrite ; Computer simulation ; Dyes ; Efficiency ; electrospinning ; Evaporation ; Graphene ; graphene oxide ; Lanthanum compounds ; Laser processing ; Lasers ; Light irradiation ; MAPLE ; Metal oxides ; Methods ; Microscopy ; Morphology ; Nanocomposites ; Nanofibers ; Nanoparticles ; Perovskites ; Photocatalysis ; Photodegradation ; Photoelectrons ; Platelets (materials) ; Pollutants ; Pulsed lasers ; Spectrum analysis ; Thin films ; Volatility</subject><ispartof>Crystals (Basel), 2020-04, Vol.10 (4), p.271</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</citedby><cites>FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</cites><orcidid>0000-0003-0499-1481 ; 0000-0001-9101-0033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Queraltó, Albert</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><creatorcontrib>Ivan, Raluca</creatorcontrib><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Frohnhoven, Robert</creatorcontrib><creatorcontrib>Mathur, Sanjay</creatorcontrib><title>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</title><title>Crystals (Basel)</title><description>Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.</description><subject>Bismuth ferrite</subject><subject>Computer simulation</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>electrospinning</subject><subject>Evaporation</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Lanthanum compounds</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Light irradiation</subject><subject>MAPLE</subject><subject>Metal oxides</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectrons</subject><subject>Platelets (materials)</subject><subject>Pollutants</subject><subject>Pulsed lasers</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Volatility</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFqGzEQXUILDYmPvS_kvI202l1JxxDsNGDiEGpfxaw0a8vYq-1oXeov6G9XtkNp5jLDmzfvDbws-8rZNyE0u7d0jCNnrGKl5FfZdcmkKCpRl5_-m79kkxi3LJVsmJT8Ovsz7TfQW3T5clWsfMxfN2EMDtcEDkYf-jx0-Qv0wYb9EKIfMX9DdzgdPBEMG-wxX_z2Du9nSHRan8idb5Hymd_tkyDhAJT47TGfQ0QqHmL0cUzI9BcMgc42t9nnDnYRJ-_9JlvOpj8evxfzxdPz48O8sEKysdC6FVa1WnFhnbYts9jVChNolW0c46VmWCvAFqwoERvoEKrWNlhDqUUlbrLni64LsDUD-T3Q0QTw5gwEWhug0dsdmpJVDlVXWy6hqjXXTSctcNDJrlWNSFp3F62Bws8DxtFsw4H69L4phZKsUUrKxCouLEshRsLunytn5hSd-RCd-AsXDo93</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Queraltó, Albert</creator><creator>György, Enikö</creator><creator>Ivan, Raluca</creator><creator>Pérez del Pino, Ángel</creator><creator>Frohnhoven, Robert</creator><creator>Mathur, Sanjay</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0499-1481</orcidid><orcidid>https://orcid.org/0000-0001-9101-0033</orcidid></search><sort><creationdate>20200401</creationdate><title>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</title><author>Queraltó, Albert ; György, Enikö ; Ivan, Raluca ; Pérez del Pino, Ángel ; Frohnhoven, Robert ; Mathur, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bismuth ferrite</topic><topic>Computer simulation</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>electrospinning</topic><topic>Evaporation</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Lanthanum compounds</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Light irradiation</topic><topic>MAPLE</topic><topic>Metal oxides</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectrons</topic><topic>Platelets (materials)</topic><topic>Pollutants</topic><topic>Pulsed lasers</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queraltó, Albert</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><creatorcontrib>Ivan, Raluca</creatorcontrib><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Frohnhoven, Robert</creatorcontrib><creatorcontrib>Mathur, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queraltó, Albert</au><au>György, Enikö</au><au>Ivan, Raluca</au><au>Pérez del Pino, Ángel</au><au>Frohnhoven, Robert</au><au>Mathur, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</atitle><jtitle>Crystals (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>271</spage><pages>271-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst10040271</doi><orcidid>https://orcid.org/0000-0003-0499-1481</orcidid><orcidid>https://orcid.org/0000-0001-9101-0033</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4352 |
ispartof | Crystals (Basel), 2020-04, Vol.10 (4), p.271 |
issn | 2073-4352 2073-4352 |
language | eng |
recordid | cdi_crossref_primary_10_3390_cryst10040271 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Bismuth ferrite Computer simulation Dyes Efficiency electrospinning Evaporation Graphene graphene oxide Lanthanum compounds Laser processing Lasers Light irradiation MAPLE Metal oxides Methods Microscopy Morphology Nanocomposites Nanofibers Nanoparticles Perovskites Photocatalysis Photodegradation Photoelectrons Platelets (materials) Pollutants Pulsed lasers Spectrum analysis Thin films Volatility |
title | Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20UV-Vis%20Photodegradation%20of%20Nanocomposite%20Reduced%20Graphene%20Oxide/Ferrite%20Nanofiber%20Films%20Prepared%20by%20Laser-Assisted%20Evaporation&rft.jtitle=Crystals%20(Basel)&rft.au=Queralt%C3%B3,%20Albert&rft.date=2020-04-01&rft.volume=10&rft.issue=4&rft.spage=271&rft.pages=271-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst10040271&rft_dat=%3Cproquest_doaj_%3E2387068877%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387068877&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_204de8f5c17a459196f7ca1a9eb3b863&rfr_iscdi=true |