Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation

Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Crystals (Basel) 2020-04, Vol.10 (4), p.271
Hauptverfasser: Queraltó, Albert, György, Enikö, Ivan, Raluca, Pérez del Pino, Ángel, Frohnhoven, Robert, Mathur, Sanjay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page 271
container_title Crystals (Basel)
container_volume 10
creator Queraltó, Albert
György, Enikö
Ivan, Raluca
Pérez del Pino, Ángel
Frohnhoven, Robert
Mathur, Sanjay
description Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.
doi_str_mv 10.3390/cryst10040271
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_crossref_primary_10_3390_cryst10040271</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_204de8f5c17a459196f7ca1a9eb3b863</doaj_id><sourcerecordid>2387068877</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</originalsourceid><addsrcrecordid>eNpVUcFqGzEQXUILDYmPvS_kvI202l1JxxDsNGDiEGpfxaw0a8vYq-1oXeov6G9XtkNp5jLDmzfvDbws-8rZNyE0u7d0jCNnrGKl5FfZdcmkKCpRl5_-m79kkxi3LJVsmJT8Ovsz7TfQW3T5clWsfMxfN2EMDtcEDkYf-jx0-Qv0wYb9EKIfMX9DdzgdPBEMG-wxX_z2Du9nSHRan8idb5Hymd_tkyDhAJT47TGfQ0QqHmL0cUzI9BcMgc42t9nnDnYRJ-_9JlvOpj8evxfzxdPz48O8sEKysdC6FVa1WnFhnbYts9jVChNolW0c46VmWCvAFqwoERvoEKrWNlhDqUUlbrLni64LsDUD-T3Q0QTw5gwEWhug0dsdmpJVDlVXWy6hqjXXTSctcNDJrlWNSFp3F62Bws8DxtFsw4H69L4phZKsUUrKxCouLEshRsLunytn5hSd-RCd-AsXDo93</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387068877</pqid></control><display><type>article</type><title>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Queraltó, Albert ; György, Enikö ; Ivan, Raluca ; Pérez del Pino, Ángel ; Frohnhoven, Robert ; Mathur, Sanjay</creator><creatorcontrib>Queraltó, Albert ; György, Enikö ; Ivan, Raluca ; Pérez del Pino, Ángel ; Frohnhoven, Robert ; Mathur, Sanjay</creatorcontrib><description>Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.</description><identifier>ISSN: 2073-4352</identifier><identifier>EISSN: 2073-4352</identifier><identifier>DOI: 10.3390/cryst10040271</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Bismuth ferrite ; Computer simulation ; Dyes ; Efficiency ; electrospinning ; Evaporation ; Graphene ; graphene oxide ; Lanthanum compounds ; Laser processing ; Lasers ; Light irradiation ; MAPLE ; Metal oxides ; Methods ; Microscopy ; Morphology ; Nanocomposites ; Nanofibers ; Nanoparticles ; Perovskites ; Photocatalysis ; Photodegradation ; Photoelectrons ; Platelets (materials) ; Pollutants ; Pulsed lasers ; Spectrum analysis ; Thin films ; Volatility</subject><ispartof>Crystals (Basel), 2020-04, Vol.10 (4), p.271</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</citedby><cites>FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</cites><orcidid>0000-0003-0499-1481 ; 0000-0001-9101-0033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Queraltó, Albert</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><creatorcontrib>Ivan, Raluca</creatorcontrib><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Frohnhoven, Robert</creatorcontrib><creatorcontrib>Mathur, Sanjay</creatorcontrib><title>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</title><title>Crystals (Basel)</title><description>Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.</description><subject>Bismuth ferrite</subject><subject>Computer simulation</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>electrospinning</subject><subject>Evaporation</subject><subject>Graphene</subject><subject>graphene oxide</subject><subject>Lanthanum compounds</subject><subject>Laser processing</subject><subject>Lasers</subject><subject>Light irradiation</subject><subject>MAPLE</subject><subject>Metal oxides</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Nanoparticles</subject><subject>Perovskites</subject><subject>Photocatalysis</subject><subject>Photodegradation</subject><subject>Photoelectrons</subject><subject>Platelets (materials)</subject><subject>Pollutants</subject><subject>Pulsed lasers</subject><subject>Spectrum analysis</subject><subject>Thin films</subject><subject>Volatility</subject><issn>2073-4352</issn><issn>2073-4352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>DOA</sourceid><recordid>eNpVUcFqGzEQXUILDYmPvS_kvI202l1JxxDsNGDiEGpfxaw0a8vYq-1oXeov6G9XtkNp5jLDmzfvDbws-8rZNyE0u7d0jCNnrGKl5FfZdcmkKCpRl5_-m79kkxi3LJVsmJT8Ovsz7TfQW3T5clWsfMxfN2EMDtcEDkYf-jx0-Qv0wYb9EKIfMX9DdzgdPBEMG-wxX_z2Du9nSHRan8idb5Hymd_tkyDhAJT47TGfQ0QqHmL0cUzI9BcMgc42t9nnDnYRJ-_9JlvOpj8evxfzxdPz48O8sEKysdC6FVa1WnFhnbYts9jVChNolW0c46VmWCvAFqwoERvoEKrWNlhDqUUlbrLni64LsDUD-T3Q0QTw5gwEWhug0dsdmpJVDlVXWy6hqjXXTSctcNDJrlWNSFp3F62Bws8DxtFsw4H69L4phZKsUUrKxCouLEshRsLunytn5hSd-RCd-AsXDo93</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Queraltó, Albert</creator><creator>György, Enikö</creator><creator>Ivan, Raluca</creator><creator>Pérez del Pino, Ángel</creator><creator>Frohnhoven, Robert</creator><creator>Mathur, Sanjay</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0499-1481</orcidid><orcidid>https://orcid.org/0000-0001-9101-0033</orcidid></search><sort><creationdate>20200401</creationdate><title>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</title><author>Queraltó, Albert ; György, Enikö ; Ivan, Raluca ; Pérez del Pino, Ángel ; Frohnhoven, Robert ; Mathur, Sanjay</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-99b3c8b9813cd9cb0cef58eb3cc8c6d01290e58aebac32ee6afea4bc6e5a29343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Bismuth ferrite</topic><topic>Computer simulation</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>electrospinning</topic><topic>Evaporation</topic><topic>Graphene</topic><topic>graphene oxide</topic><topic>Lanthanum compounds</topic><topic>Laser processing</topic><topic>Lasers</topic><topic>Light irradiation</topic><topic>MAPLE</topic><topic>Metal oxides</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Nanoparticles</topic><topic>Perovskites</topic><topic>Photocatalysis</topic><topic>Photodegradation</topic><topic>Photoelectrons</topic><topic>Platelets (materials)</topic><topic>Pollutants</topic><topic>Pulsed lasers</topic><topic>Spectrum analysis</topic><topic>Thin films</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Queraltó, Albert</creatorcontrib><creatorcontrib>György, Enikö</creatorcontrib><creatorcontrib>Ivan, Raluca</creatorcontrib><creatorcontrib>Pérez del Pino, Ángel</creatorcontrib><creatorcontrib>Frohnhoven, Robert</creatorcontrib><creatorcontrib>Mathur, Sanjay</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Crystals (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Queraltó, Albert</au><au>György, Enikö</au><au>Ivan, Raluca</au><au>Pérez del Pino, Ángel</au><au>Frohnhoven, Robert</au><au>Mathur, Sanjay</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation</atitle><jtitle>Crystals (Basel)</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>10</volume><issue>4</issue><spage>271</spage><pages>271-</pages><issn>2073-4352</issn><eissn>2073-4352</eissn><abstract>Nanocomposite films of rGO/MFeO3 (M = Bi, La) nanofibers were grown by matrix-assisted pulsed laser evaporation of frozen target dispersions containing GO platelets and MFeO3 nanofibers. Electron microscopy investigations confirmed the successful fabrication of MFeO3 nanofibers by electrospinning Part of nanofibers were broken into shorter units, and spherical nanoparticles were formed during laser processing. Numerical simulations were performed in order to estimate the maximum temperature values reached by the nanofibers during laser irradiation. X-ray diffraction analyses revealed the formation of perovskite MFeO3 phase, whereas secondary phases of BiFeO3 could not be completely avoided, due to the high volatility of bismuth. XPS measurements disclosed the presence of metallic bismuth and Fe2+ for BiFeO3, whereas La2(CO3)3 and Fe2+ were observed in case of LaFeO3 nanofibers. High photocatalytic efficiencies for the degradation of methyl orange were achieved for nanocomposite films, both under UV and visible light irradiation conditions. Degradation values of up to 70% after 400 min irradiation were obtained for rGO/LaFeO3 nanocomposite thin layers, with weights below 10 µg, rGO platelets acting as reservoirs for photoelectrons generated at the surface of MFeO3.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/cryst10040271</doi><orcidid>https://orcid.org/0000-0003-0499-1481</orcidid><orcidid>https://orcid.org/0000-0001-9101-0033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4352
ispartof Crystals (Basel), 2020-04, Vol.10 (4), p.271
issn 2073-4352
2073-4352
language eng
recordid cdi_crossref_primary_10_3390_cryst10040271
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Bismuth ferrite
Computer simulation
Dyes
Efficiency
electrospinning
Evaporation
Graphene
graphene oxide
Lanthanum compounds
Laser processing
Lasers
Light irradiation
MAPLE
Metal oxides
Methods
Microscopy
Morphology
Nanocomposites
Nanofibers
Nanoparticles
Perovskites
Photocatalysis
Photodegradation
Photoelectrons
Platelets (materials)
Pollutants
Pulsed lasers
Spectrum analysis
Thin films
Volatility
title Enhanced UV-Vis Photodegradation of Nanocomposite Reduced Graphene Oxide/Ferrite Nanofiber Films Prepared by Laser-Assisted Evaporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20UV-Vis%20Photodegradation%20of%20Nanocomposite%20Reduced%20Graphene%20Oxide/Ferrite%20Nanofiber%20Films%20Prepared%20by%20Laser-Assisted%20Evaporation&rft.jtitle=Crystals%20(Basel)&rft.au=Queralt%C3%B3,%20Albert&rft.date=2020-04-01&rft.volume=10&rft.issue=4&rft.spage=271&rft.pages=271-&rft.issn=2073-4352&rft.eissn=2073-4352&rft_id=info:doi/10.3390/cryst10040271&rft_dat=%3Cproquest_doaj_%3E2387068877%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387068877&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_204de8f5c17a459196f7ca1a9eb3b863&rfr_iscdi=true