Insight into Composition and Intermediate Evolutions of Copper-Based Catalysts during Gas-Phase CO2 Electroreduction to Multicarbon Oxygenates

Conversion of CO2 to valuable chemicals driven by renewable electricity via electrocatalytic reduction processes is of great significance for achieving carbon neutrality. Copper-based materials distinguish themselves from other electrocatalysts for their unique capability to produce multicarbon comp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2021-12, Vol.11 (12), p.1502, Article 1502
Hauptverfasser: Li, Guihua, Zhao, Yonghui, Li, Jerry Pui Ho, Chen, Wei, Li, Shoujie, Dong, Xiao, Song, Yanfang, Yang, Yong, Wei, Wei, Sun, Yuhan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Conversion of CO2 to valuable chemicals driven by renewable electricity via electrocatalytic reduction processes is of great significance for achieving carbon neutrality. Copper-based materials distinguish themselves from other electrocatalysts for their unique capability to produce multicarbon compounds in CO2 electroreduction. However, the intrinsic active composition and C-C coupling mechanism of copper-based catalysts are still ambiguous. This is largely due to the absence of appropriate in situ approaches to monitor the complicated processes of CO2 electroreduction. Here, we adopted operando spectroscopy techniques, including Raman and infrared, to investigate the evolution of compositions and intermediates during gas-phase CO2 electroreduction on Cu foam, Cu2O nanowire and CuO nanowire catalysts. Although all the three copper-based catalysts possessed the activity of electroreducing gas-phase CO2 to multicarbon oxygenates, Cu2O nanowires showed the much superior performance with a 71.9% Faradaic efficiency of acetaldehyde. Operando Raman spectra manifested that the cuprous oxide remained stable during the whole gas-phase CO2 electroreduction, and operando diffuse reflectance infrared Fourier transform spectroscopy (DRFITS) results provide direct evidences of key intermediates and their evolutions for producing multicarbon oxygenates, in consistence with the density functional theory calculations.
ISSN:2073-4344
2073-4344
DOI:10.3390/catal11121502