Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis
The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various...
Gespeichert in:
Veröffentlicht in: | Catalysts 2020-12, Vol.10 (12), p.1387, Article 1387 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 1387 |
container_title | Catalysts |
container_volume | 10 |
creator | Matienzo, D. J. Donn Kutlusoy, Tugce Divanis, Spyridon Di Bari, Chiara Instuli, Emanuele |
description | The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis. |
doi_str_mv | 10.3390/catal10121387 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_catal10121387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466385149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4soOHRH7wEPHqSal_RHepxl6mAyEcVjyZJUs9VmJul0_72pU9GbOby8Fz7vG_hE0RHgM0oLfC645w1gIEBZvhMNCM5pnNAk2f3V70dD5xY4nCJgkA6i9wvViucXbpe6fUK3ypq1W2qv0LhRwlvzGbtx3p2g2fgOjYTXa-03iDtU8lZqyQN7E4rVvHGoNhZNWtk5389o1Cx5o1uFHnviOzPkaXcY7dVhQw2_7oPo4XJ8X17H09nVpBxNY0Fz7GPgkqk5E6TOVV0QLlNFSQ2Y57nEqVJEkPBIAIAlVGaMpRnPUkjzogCQWNKD6Hibu7LmtVPOVwvT2TZ8WZEkyyhLISkCFW8pYY1zVtXVyupgZVMBrnq_1R-_gT_d8m9qbmondLCofnaC3wwTAlnWq4ZAs__Tpfbca9OWpms9_QD4MZAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466385149</pqid></control><display><type>article</type><title>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Matienzo, D. J. Donn ; Kutlusoy, Tugce ; Divanis, Spyridon ; Di Bari, Chiara ; Instuli, Emanuele</creator><creatorcontrib>Matienzo, D. J. Donn ; Kutlusoy, Tugce ; Divanis, Spyridon ; Di Bari, Chiara ; Instuli, Emanuele</creatorcontrib><description>The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal10121387</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Catalysts ; Chemical reactions ; Chemistry ; Chemistry, Physical ; Electrocatalysts ; Electrochemical analysis ; Electrolysis ; Electrolytes ; Energy ; Energy storage ; Fossil fuels ; Hydrogen ; Lanthanum oxides ; Materials selection ; Metal oxides ; Metals ; Oxygen evolution reactions ; Perovskites ; Physical Sciences ; Precipitation ; Science & Technology</subject><ispartof>Catalysts, 2020-12, Vol.10 (12), p.1387, Article 1387</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000602216600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</citedby><cites>FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</cites><orcidid>0000-0003-4264-5977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Matienzo, D. J. Donn</creatorcontrib><creatorcontrib>Kutlusoy, Tugce</creatorcontrib><creatorcontrib>Divanis, Spyridon</creatorcontrib><creatorcontrib>Di Bari, Chiara</creatorcontrib><creatorcontrib>Instuli, Emanuele</creatorcontrib><title>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</title><title>Catalysts</title><addtitle>CATALYSTS</addtitle><description>The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.</description><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Fossil fuels</subject><subject>Hydrogen</subject><subject>Lanthanum oxides</subject><subject>Materials selection</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Oxygen evolution reactions</subject><subject>Perovskites</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Science & Technology</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkM9LwzAUx4soOHRH7wEPHqSal_RHepxl6mAyEcVjyZJUs9VmJul0_72pU9GbOby8Fz7vG_hE0RHgM0oLfC645w1gIEBZvhMNCM5pnNAk2f3V70dD5xY4nCJgkA6i9wvViucXbpe6fUK3ypq1W2qv0LhRwlvzGbtx3p2g2fgOjYTXa-03iDtU8lZqyQN7E4rVvHGoNhZNWtk5389o1Cx5o1uFHnviOzPkaXcY7dVhQw2_7oPo4XJ8X17H09nVpBxNY0Fz7GPgkqk5E6TOVV0QLlNFSQ2Y57nEqVJEkPBIAIAlVGaMpRnPUkjzogCQWNKD6Hibu7LmtVPOVwvT2TZ8WZEkyyhLISkCFW8pYY1zVtXVyupgZVMBrnq_1R-_gT_d8m9qbmondLCofnaC3wwTAlnWq4ZAs__Tpfbca9OWpms9_QD4MZAe</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Matienzo, D. J. Donn</creator><creator>Kutlusoy, Tugce</creator><creator>Divanis, Spyridon</creator><creator>Di Bari, Chiara</creator><creator>Instuli, Emanuele</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4264-5977</orcidid></search><sort><creationdate>20201201</creationdate><title>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</title><author>Matienzo, D. J. Donn ; Kutlusoy, Tugce ; Divanis, Spyridon ; Di Bari, Chiara ; Instuli, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Fossil fuels</topic><topic>Hydrogen</topic><topic>Lanthanum oxides</topic><topic>Materials selection</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Oxygen evolution reactions</topic><topic>Perovskites</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matienzo, D. J. Donn</creatorcontrib><creatorcontrib>Kutlusoy, Tugce</creatorcontrib><creatorcontrib>Divanis, Spyridon</creatorcontrib><creatorcontrib>Di Bari, Chiara</creatorcontrib><creatorcontrib>Instuli, Emanuele</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matienzo, D. J. Donn</au><au>Kutlusoy, Tugce</au><au>Divanis, Spyridon</au><au>Di Bari, Chiara</au><au>Instuli, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</atitle><jtitle>Catalysts</jtitle><stitle>CATALYSTS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>1387</spage><pages>1387-</pages><artnum>1387</artnum><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/catal10121387</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4264-5977</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2073-4344 |
ispartof | Catalysts, 2020-12, Vol.10 (12), p.1387, Article 1387 |
issn | 2073-4344 2073-4344 |
language | eng |
recordid | cdi_crossref_primary_10_3390_catal10121387 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Catalysts Chemical reactions Chemistry Chemistry, Physical Electrocatalysts Electrochemical analysis Electrolysis Electrolytes Energy Energy storage Fossil fuels Hydrogen Lanthanum oxides Materials selection Metal oxides Metals Oxygen evolution reactions Perovskites Physical Sciences Precipitation Science & Technology |
title | Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20Perovskite%20Electrocatalysts'%20OER%20Activity%20as%20Candidate%20Materials%20for%20Industrial%20Alkaline%20Water%20Electrolysis&rft.jtitle=Catalysts&rft.au=Matienzo,%20D.%20J.%20Donn&rft.date=2020-12-01&rft.volume=10&rft.issue=12&rft.spage=1387&rft.pages=1387-&rft.artnum=1387&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal10121387&rft_dat=%3Cproquest_cross%3E2466385149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466385149&rft_id=info:pmid/&rfr_iscdi=true |