Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis

The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysts 2020-12, Vol.10 (12), p.1387, Article 1387
Hauptverfasser: Matienzo, D. J. Donn, Kutlusoy, Tugce, Divanis, Spyridon, Di Bari, Chiara, Instuli, Emanuele
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 1387
container_title Catalysts
container_volume 10
creator Matienzo, D. J. Donn
Kutlusoy, Tugce
Divanis, Spyridon
Di Bari, Chiara
Instuli, Emanuele
description The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.
doi_str_mv 10.3390/catal10121387
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3390_catal10121387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2466385149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</originalsourceid><addsrcrecordid>eNqNkM9LwzAUx4soOHRH7wEPHqSal_RHepxl6mAyEcVjyZJUs9VmJul0_72pU9GbOby8Fz7vG_hE0RHgM0oLfC645w1gIEBZvhMNCM5pnNAk2f3V70dD5xY4nCJgkA6i9wvViucXbpe6fUK3ypq1W2qv0LhRwlvzGbtx3p2g2fgOjYTXa-03iDtU8lZqyQN7E4rVvHGoNhZNWtk5389o1Cx5o1uFHnviOzPkaXcY7dVhQw2_7oPo4XJ8X17H09nVpBxNY0Fz7GPgkqk5E6TOVV0QLlNFSQ2Y57nEqVJEkPBIAIAlVGaMpRnPUkjzogCQWNKD6Hibu7LmtVPOVwvT2TZ8WZEkyyhLISkCFW8pYY1zVtXVyupgZVMBrnq_1R-_gT_d8m9qbmondLCofnaC3wwTAlnWq4ZAs__Tpfbca9OWpms9_QD4MZAe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466385149</pqid></control><display><type>article</type><title>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Matienzo, D. J. Donn ; Kutlusoy, Tugce ; Divanis, Spyridon ; Di Bari, Chiara ; Instuli, Emanuele</creator><creatorcontrib>Matienzo, D. J. Donn ; Kutlusoy, Tugce ; Divanis, Spyridon ; Di Bari, Chiara ; Instuli, Emanuele</creatorcontrib><description>The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal10121387</identifier><language>eng</language><publisher>BASEL: Mdpi</publisher><subject>Catalysts ; Chemical reactions ; Chemistry ; Chemistry, Physical ; Electrocatalysts ; Electrochemical analysis ; Electrolysis ; Electrolytes ; Energy ; Energy storage ; Fossil fuels ; Hydrogen ; Lanthanum oxides ; Materials selection ; Metal oxides ; Metals ; Oxygen evolution reactions ; Perovskites ; Physical Sciences ; Precipitation ; Science &amp; Technology</subject><ispartof>Catalysts, 2020-12, Vol.10 (12), p.1387, Article 1387</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>15</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000602216600001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</citedby><cites>FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</cites><orcidid>0000-0003-4264-5977</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Matienzo, D. J. Donn</creatorcontrib><creatorcontrib>Kutlusoy, Tugce</creatorcontrib><creatorcontrib>Divanis, Spyridon</creatorcontrib><creatorcontrib>Di Bari, Chiara</creatorcontrib><creatorcontrib>Instuli, Emanuele</creatorcontrib><title>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</title><title>Catalysts</title><addtitle>CATALYSTS</addtitle><description>The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.</description><subject>Catalysts</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry, Physical</subject><subject>Electrocatalysts</subject><subject>Electrochemical analysis</subject><subject>Electrolysis</subject><subject>Electrolytes</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Fossil fuels</subject><subject>Hydrogen</subject><subject>Lanthanum oxides</subject><subject>Materials selection</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Oxygen evolution reactions</subject><subject>Perovskites</subject><subject>Physical Sciences</subject><subject>Precipitation</subject><subject>Science &amp; Technology</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>AOWDO</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNkM9LwzAUx4soOHRH7wEPHqSal_RHepxl6mAyEcVjyZJUs9VmJul0_72pU9GbOby8Fz7vG_hE0RHgM0oLfC645w1gIEBZvhMNCM5pnNAk2f3V70dD5xY4nCJgkA6i9wvViucXbpe6fUK3ypq1W2qv0LhRwlvzGbtx3p2g2fgOjYTXa-03iDtU8lZqyQN7E4rVvHGoNhZNWtk5389o1Cx5o1uFHnviOzPkaXcY7dVhQw2_7oPo4XJ8X17H09nVpBxNY0Fz7GPgkqk5E6TOVV0QLlNFSQ2Y57nEqVJEkPBIAIAlVGaMpRnPUkjzogCQWNKD6Hibu7LmtVPOVwvT2TZ8WZEkyyhLISkCFW8pYY1zVtXVyupgZVMBrnq_1R-_gT_d8m9qbmondLCofnaC3wwTAlnWq4ZAs__Tpfbca9OWpms9_QD4MZAe</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Matienzo, D. J. Donn</creator><creator>Kutlusoy, Tugce</creator><creator>Divanis, Spyridon</creator><creator>Di Bari, Chiara</creator><creator>Instuli, Emanuele</creator><general>Mdpi</general><general>MDPI AG</general><scope>AOWDO</scope><scope>BLEPL</scope><scope>DTL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0003-4264-5977</orcidid></search><sort><creationdate>20201201</creationdate><title>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</title><author>Matienzo, D. J. Donn ; Kutlusoy, Tugce ; Divanis, Spyridon ; Di Bari, Chiara ; Instuli, Emanuele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-1ad8eb8c2f7ef92ad5e32f10a77d05ee2c22ad2111843d68856a651579911d0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Catalysts</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry, Physical</topic><topic>Electrocatalysts</topic><topic>Electrochemical analysis</topic><topic>Electrolysis</topic><topic>Electrolytes</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Fossil fuels</topic><topic>Hydrogen</topic><topic>Lanthanum oxides</topic><topic>Materials selection</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Oxygen evolution reactions</topic><topic>Perovskites</topic><topic>Physical Sciences</topic><topic>Precipitation</topic><topic>Science &amp; Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Matienzo, D. J. Donn</creatorcontrib><creatorcontrib>Kutlusoy, Tugce</creatorcontrib><creatorcontrib>Divanis, Spyridon</creatorcontrib><creatorcontrib>Di Bari, Chiara</creatorcontrib><creatorcontrib>Instuli, Emanuele</creatorcontrib><collection>Web of Science - Science Citation Index Expanded - 2020</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Matienzo, D. J. Donn</au><au>Kutlusoy, Tugce</au><au>Divanis, Spyridon</au><au>Di Bari, Chiara</au><au>Instuli, Emanuele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis</atitle><jtitle>Catalysts</jtitle><stitle>CATALYSTS</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>10</volume><issue>12</issue><spage>1387</spage><pages>1387-</pages><artnum>1387</artnum><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The selection and evaluation of electrocatalysts as candidate materials for industrial alkaline water electrolysis is fundamental in the development of promising energy storage and sustainable fuels for future energy infrastructure. However, the oxygen evolution reaction (OER) activities of various electrocatalysts already reported in previous studies are not standardized. This work reports on the use of perovskite materials (LaFeO3, LaCoO3, LaNiO3, PrCoO3, Pr0.8Sr0.2CoO3, and Pr0.8Ba0.2CoO3) as OER electrocatalysts for alkaline water electrolysis. A facile co-precipitation technique with subsequent thermal annealing (at 700 degrees C in air) was performed. Industrial requirements and criteria (cost and ease of scaling up) were well-considered for the selection of the materials. The highest OER activity was observed in LaNiO3 among the La-based perovskites, and in Pr0.8Sr0.2CoO3 among the Pr-based perovskites. Moreover, the formation of double perovskites (Pr0.8Sr0.2CoO3 and Pr0.8Ba0.2CoO3) improved the OER activity of PrCoO3. This work highlights that the simple characterization and electrochemical tests performed are considered the initial step in evaluating candidate catalyst materials to be used for industrial alkaline water electrolysis.</abstract><cop>BASEL</cop><pub>Mdpi</pub><doi>10.3390/catal10121387</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4264-5977</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2020-12, Vol.10 (12), p.1387, Article 1387
issn 2073-4344
2073-4344
language eng
recordid cdi_crossref_primary_10_3390_catal10121387
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Catalysts
Chemical reactions
Chemistry
Chemistry, Physical
Electrocatalysts
Electrochemical analysis
Electrolysis
Electrolytes
Energy
Energy storage
Fossil fuels
Hydrogen
Lanthanum oxides
Materials selection
Metal oxides
Metals
Oxygen evolution reactions
Perovskites
Physical Sciences
Precipitation
Science & Technology
title Benchmarking Perovskite Electrocatalysts' OER Activity as Candidate Materials for Industrial Alkaline Water Electrolysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T04%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Benchmarking%20Perovskite%20Electrocatalysts'%20OER%20Activity%20as%20Candidate%20Materials%20for%20Industrial%20Alkaline%20Water%20Electrolysis&rft.jtitle=Catalysts&rft.au=Matienzo,%20D.%20J.%20Donn&rft.date=2020-12-01&rft.volume=10&rft.issue=12&rft.spage=1387&rft.pages=1387-&rft.artnum=1387&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal10121387&rft_dat=%3Cproquest_cross%3E2466385149%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2466385149&rft_id=info:pmid/&rfr_iscdi=true