Detecting Patient Health Trajectories Using a Full-Body Burn Physiology Model

A whole-body physiology model of inflammatory burn injury was used to train an algorithm to correctly detect patients’ states. The physiology model of a thermal injury takes the surface area of patient skin burned as an input to the model and responds to common treatments. This model is leveraged to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BioMedInformatics 2021-12, Vol.1 (3), p.127-137
Hauptverfasser: Baird, Austin, Amos-Binks, Adam, Tatum, Nathan, White, Steven, Hackett, Matthew, Serio-Melvin, Maria
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 137
container_issue 3
container_start_page 127
container_title BioMedInformatics
container_volume 1
creator Baird, Austin
Amos-Binks, Adam
Tatum, Nathan
White, Steven
Hackett, Matthew
Serio-Melvin, Maria
description A whole-body physiology model of inflammatory burn injury was used to train an algorithm to correctly detect patients’ states. The physiology model of a thermal injury takes the surface area of patient skin burned as an input to the model and responds to common treatments. This model is leveraged to build a database of patient physiology as a function of total body surface area burn, without treatment, over a 48-h window. Using this database, we train a model to determine patient injury status as a function of the available physiology data. The algorithm can group virtual patients into three distinct categories, corresponding to long term patient health. The results show that, given an initial virtual patient and injury, the algorithm can correctly determine the placement of that patient into the corresponding category, effectively classifying long term patient outcomes.
doi_str_mv 10.3390/biomedinformatics1030009
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_biomedinformatics1030009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_biomedinformatics1030009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1699-83ec9990f7e7de3767f11e4b1b8c2ca20d451380b96e9e25be0fabeddd2711323</originalsourceid><addsrcrecordid>eNp1kLtuwjAYha2qlYoo7-AXSOtLiOOx0FKQQGWAOfLlNxg5cWWHIW_foHbo0ukc6Xz6hoMQpuSZc0letI8tWN-5mFrVe5Mp4YQQeYcmrBK8ECWr7v_0RzTL-TISrBacyXqCdm_Qg-l9d8L70QBdj9egQn_Gh6Qu4xKTh4yP-UYovLqGUCyiHfDimjq8Pw_ZxxBPA95FC-EJPTgVMsx-c4qOq_fDcl1sPz82y9dtYWglZVFzMFJK4gQIC1xUwlEKpaa6NswoRmw5p7wmWlYggc01EKc0WGuZoJQzPkX1j9ekmHMC13wl36o0NJQ0t2ea_57h3wK0XUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Detecting Patient Health Trajectories Using a Full-Body Burn Physiology Model</title><source>DOAJ Directory of Open Access Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Baird, Austin ; Amos-Binks, Adam ; Tatum, Nathan ; White, Steven ; Hackett, Matthew ; Serio-Melvin, Maria</creator><creatorcontrib>Baird, Austin ; Amos-Binks, Adam ; Tatum, Nathan ; White, Steven ; Hackett, Matthew ; Serio-Melvin, Maria</creatorcontrib><description>A whole-body physiology model of inflammatory burn injury was used to train an algorithm to correctly detect patients’ states. The physiology model of a thermal injury takes the surface area of patient skin burned as an input to the model and responds to common treatments. This model is leveraged to build a database of patient physiology as a function of total body surface area burn, without treatment, over a 48-h window. Using this database, we train a model to determine patient injury status as a function of the available physiology data. The algorithm can group virtual patients into three distinct categories, corresponding to long term patient health. The results show that, given an initial virtual patient and injury, the algorithm can correctly determine the placement of that patient into the corresponding category, effectively classifying long term patient outcomes.</description><identifier>ISSN: 2673-7426</identifier><identifier>EISSN: 2673-7426</identifier><identifier>DOI: 10.3390/biomedinformatics1030009</identifier><language>eng</language><ispartof>BioMedInformatics, 2021-12, Vol.1 (3), p.127-137</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1699-83ec9990f7e7de3767f11e4b1b8c2ca20d451380b96e9e25be0fabeddd2711323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Baird, Austin</creatorcontrib><creatorcontrib>Amos-Binks, Adam</creatorcontrib><creatorcontrib>Tatum, Nathan</creatorcontrib><creatorcontrib>White, Steven</creatorcontrib><creatorcontrib>Hackett, Matthew</creatorcontrib><creatorcontrib>Serio-Melvin, Maria</creatorcontrib><title>Detecting Patient Health Trajectories Using a Full-Body Burn Physiology Model</title><title>BioMedInformatics</title><description>A whole-body physiology model of inflammatory burn injury was used to train an algorithm to correctly detect patients’ states. The physiology model of a thermal injury takes the surface area of patient skin burned as an input to the model and responds to common treatments. This model is leveraged to build a database of patient physiology as a function of total body surface area burn, without treatment, over a 48-h window. Using this database, we train a model to determine patient injury status as a function of the available physiology data. The algorithm can group virtual patients into three distinct categories, corresponding to long term patient health. The results show that, given an initial virtual patient and injury, the algorithm can correctly determine the placement of that patient into the corresponding category, effectively classifying long term patient outcomes.</description><issn>2673-7426</issn><issn>2673-7426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kLtuwjAYha2qlYoo7-AXSOtLiOOx0FKQQGWAOfLlNxg5cWWHIW_foHbo0ukc6Xz6hoMQpuSZc0letI8tWN-5mFrVe5Mp4YQQeYcmrBK8ECWr7v_0RzTL-TISrBacyXqCdm_Qg-l9d8L70QBdj9egQn_Gh6Qu4xKTh4yP-UYovLqGUCyiHfDimjq8Pw_ZxxBPA95FC-EJPTgVMsx-c4qOq_fDcl1sPz82y9dtYWglZVFzMFJK4gQIC1xUwlEKpaa6NswoRmw5p7wmWlYggc01EKc0WGuZoJQzPkX1j9ekmHMC13wl36o0NJQ0t2ea_57h3wK0XUY</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Baird, Austin</creator><creator>Amos-Binks, Adam</creator><creator>Tatum, Nathan</creator><creator>White, Steven</creator><creator>Hackett, Matthew</creator><creator>Serio-Melvin, Maria</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20211201</creationdate><title>Detecting Patient Health Trajectories Using a Full-Body Burn Physiology Model</title><author>Baird, Austin ; Amos-Binks, Adam ; Tatum, Nathan ; White, Steven ; Hackett, Matthew ; Serio-Melvin, Maria</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1699-83ec9990f7e7de3767f11e4b1b8c2ca20d451380b96e9e25be0fabeddd2711323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baird, Austin</creatorcontrib><creatorcontrib>Amos-Binks, Adam</creatorcontrib><creatorcontrib>Tatum, Nathan</creatorcontrib><creatorcontrib>White, Steven</creatorcontrib><creatorcontrib>Hackett, Matthew</creatorcontrib><creatorcontrib>Serio-Melvin, Maria</creatorcontrib><collection>CrossRef</collection><jtitle>BioMedInformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baird, Austin</au><au>Amos-Binks, Adam</au><au>Tatum, Nathan</au><au>White, Steven</au><au>Hackett, Matthew</au><au>Serio-Melvin, Maria</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting Patient Health Trajectories Using a Full-Body Burn Physiology Model</atitle><jtitle>BioMedInformatics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>1</volume><issue>3</issue><spage>127</spage><epage>137</epage><pages>127-137</pages><issn>2673-7426</issn><eissn>2673-7426</eissn><abstract>A whole-body physiology model of inflammatory burn injury was used to train an algorithm to correctly detect patients’ states. The physiology model of a thermal injury takes the surface area of patient skin burned as an input to the model and responds to common treatments. This model is leveraged to build a database of patient physiology as a function of total body surface area burn, without treatment, over a 48-h window. Using this database, we train a model to determine patient injury status as a function of the available physiology data. The algorithm can group virtual patients into three distinct categories, corresponding to long term patient health. The results show that, given an initial virtual patient and injury, the algorithm can correctly determine the placement of that patient into the corresponding category, effectively classifying long term patient outcomes.</abstract><doi>10.3390/biomedinformatics1030009</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2673-7426
ispartof BioMedInformatics, 2021-12, Vol.1 (3), p.127-137
issn 2673-7426
2673-7426
language eng
recordid cdi_crossref_primary_10_3390_biomedinformatics1030009
source DOAJ Directory of Open Access Journals; MDPI - Multidisciplinary Digital Publishing Institute
title Detecting Patient Health Trajectories Using a Full-Body Burn Physiology Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T01%3A04%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20Patient%20Health%20Trajectories%20Using%20a%20Full-Body%20Burn%20Physiology%20Model&rft.jtitle=BioMedInformatics&rft.au=Baird,%20Austin&rft.date=2021-12-01&rft.volume=1&rft.issue=3&rft.spage=127&rft.epage=137&rft.pages=127-137&rft.issn=2673-7426&rft.eissn=2673-7426&rft_id=info:doi/10.3390/biomedinformatics1030009&rft_dat=%3Ccrossref%3E10_3390_biomedinformatics1030009%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true