Polynomial Annuities
We use a payment pattern of the type {1k,2k,3k,…} to generalize the standard level payment and increasing annuity to polynomial payment patterns. We derive explicit formulas for the present value of an n-year polynomial annuity, the present value of an m-monthly n-year polynomial annuity, and the pr...
Gespeichert in:
Veröffentlicht in: | AppliedMath 2022-06, Vol.2 (2), p.212-233 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 233 |
---|---|
container_issue | 2 |
container_start_page | 212 |
container_title | AppliedMath |
container_volume | 2 |
creator | Rajaram, Rajeev Ritchey, Nathan |
description | We use a payment pattern of the type {1k,2k,3k,…} to generalize the standard level payment and increasing annuity to polynomial payment patterns. We derive explicit formulas for the present value of an n-year polynomial annuity, the present value of an m-monthly n-year polynomial annuity, and the present value of an n-year continuous polynomial annuity. We also use the idea to extend the annuities to payment patterns derived from analytic functions, as well as to payment patterns of the type {1r,2r,3r,…}, with r being an arbitrary real number. In the process, we develop possible approximations to k! and for the gamma function evaluated at real numbers. |
doi_str_mv | 10.3390/appliedmath2020013 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3390_appliedmath2020013</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3390_appliedmath2020013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c172t-17bea40cbe21c89654b6d91ddded5b9c782c95f4d7dea6952bbe2803daabb7e03</originalsourceid><addsrcrecordid>eNplj0tLAzEURoMotNTuXHXlHxi9uZlMcpel-IKCLnQ9JLkZmjIvJuOi_15FF0JX51scPjhCbCTcKUVw78axTZE7Nx8QEECqC7HEyqiCCOjy316Idc5HAECrjTJ2KW7ehvbUD11y7e227z_TnGK-FleNa3Nc_3ElPh4f3nfPxf716WW33RdBGpwLaXx0JQQfUQZLlS59xSSZObL2FIzFQLop2XB0FWn036YFxc55byKolcDf3zANOU-xqccpdW461RLqn7T6PE19AUa5RNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polynomial Annuities</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Rajaram, Rajeev ; Ritchey, Nathan</creator><creatorcontrib>Rajaram, Rajeev ; Ritchey, Nathan</creatorcontrib><description>We use a payment pattern of the type {1k,2k,3k,…} to generalize the standard level payment and increasing annuity to polynomial payment patterns. We derive explicit formulas for the present value of an n-year polynomial annuity, the present value of an m-monthly n-year polynomial annuity, and the present value of an n-year continuous polynomial annuity. We also use the idea to extend the annuities to payment patterns derived from analytic functions, as well as to payment patterns of the type {1r,2r,3r,…}, with r being an arbitrary real number. In the process, we develop possible approximations to k! and for the gamma function evaluated at real numbers.</description><identifier>ISSN: 2673-9909</identifier><identifier>EISSN: 2673-9909</identifier><identifier>DOI: 10.3390/appliedmath2020013</identifier><language>eng</language><ispartof>AppliedMath, 2022-06, Vol.2 (2), p.212-233</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c172t-17bea40cbe21c89654b6d91ddded5b9c782c95f4d7dea6952bbe2803daabb7e03</cites><orcidid>0000-0002-8919-4512 ; 0000-0003-1680-6706</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Rajaram, Rajeev</creatorcontrib><creatorcontrib>Ritchey, Nathan</creatorcontrib><title>Polynomial Annuities</title><title>AppliedMath</title><description>We use a payment pattern of the type {1k,2k,3k,…} to generalize the standard level payment and increasing annuity to polynomial payment patterns. We derive explicit formulas for the present value of an n-year polynomial annuity, the present value of an m-monthly n-year polynomial annuity, and the present value of an n-year continuous polynomial annuity. We also use the idea to extend the annuities to payment patterns derived from analytic functions, as well as to payment patterns of the type {1r,2r,3r,…}, with r being an arbitrary real number. In the process, we develop possible approximations to k! and for the gamma function evaluated at real numbers.</description><issn>2673-9909</issn><issn>2673-9909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplj0tLAzEURoMotNTuXHXlHxi9uZlMcpel-IKCLnQ9JLkZmjIvJuOi_15FF0JX51scPjhCbCTcKUVw78axTZE7Nx8QEECqC7HEyqiCCOjy316Idc5HAECrjTJ2KW7ehvbUD11y7e227z_TnGK-FleNa3Nc_3ElPh4f3nfPxf716WW33RdBGpwLaXx0JQQfUQZLlS59xSSZObL2FIzFQLop2XB0FWn036YFxc55byKolcDf3zANOU-xqccpdW461RLqn7T6PE19AUa5RNA</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Rajaram, Rajeev</creator><creator>Ritchey, Nathan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8919-4512</orcidid><orcidid>https://orcid.org/0000-0003-1680-6706</orcidid></search><sort><creationdate>20220601</creationdate><title>Polynomial Annuities</title><author>Rajaram, Rajeev ; Ritchey, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c172t-17bea40cbe21c89654b6d91ddded5b9c782c95f4d7dea6952bbe2803daabb7e03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajaram, Rajeev</creatorcontrib><creatorcontrib>Ritchey, Nathan</creatorcontrib><collection>CrossRef</collection><jtitle>AppliedMath</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajaram, Rajeev</au><au>Ritchey, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polynomial Annuities</atitle><jtitle>AppliedMath</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>2</volume><issue>2</issue><spage>212</spage><epage>233</epage><pages>212-233</pages><issn>2673-9909</issn><eissn>2673-9909</eissn><abstract>We use a payment pattern of the type {1k,2k,3k,…} to generalize the standard level payment and increasing annuity to polynomial payment patterns. We derive explicit formulas for the present value of an n-year polynomial annuity, the present value of an m-monthly n-year polynomial annuity, and the present value of an n-year continuous polynomial annuity. We also use the idea to extend the annuities to payment patterns derived from analytic functions, as well as to payment patterns of the type {1r,2r,3r,…}, with r being an arbitrary real number. In the process, we develop possible approximations to k! and for the gamma function evaluated at real numbers.</abstract><doi>10.3390/appliedmath2020013</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-8919-4512</orcidid><orcidid>https://orcid.org/0000-0003-1680-6706</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2673-9909 |
ispartof | AppliedMath, 2022-06, Vol.2 (2), p.212-233 |
issn | 2673-9909 2673-9909 |
language | eng |
recordid | cdi_crossref_primary_10_3390_appliedmath2020013 |
source | MDPI - Multidisciplinary Digital Publishing Institute; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Polynomial Annuities |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T05%3A36%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polynomial%20Annuities&rft.jtitle=AppliedMath&rft.au=Rajaram,%20Rajeev&rft.date=2022-06-01&rft.volume=2&rft.issue=2&rft.spage=212&rft.epage=233&rft.pages=212-233&rft.issn=2673-9909&rft.eissn=2673-9909&rft_id=info:doi/10.3390/appliedmath2020013&rft_dat=%3Ccrossref%3E10_3390_appliedmath2020013%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |