Enhancement of Desulfurization Capacity with Cu-Based Macro-Porous Sorbents for Hydrogen Production by Gasification of Petroleum Cokes

Macro-porous alumina was used as a support for a pellet-type Cu-based desulfurization sorbent in the gas purification process for producing blue hydrogen by the gasification of petroleum coke. The effects of the macro-porous alumina on the pellet-type sorbents in reducing the gas diffusion resistanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences 2021-09, Vol.11 (17), p.7775, Article 7775
Hauptverfasser: Kim, Dongjoon, Bae, Dasol, Kim, Yu Jin, Lee, Seung Jong, Lee, Jin Wook, Yun, Yongseung, Park, No-Kuk, Kim, Minkyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Macro-porous alumina was used as a support for a pellet-type Cu-based desulfurization sorbent in the gas purification process for producing blue hydrogen by the gasification of petroleum coke. The effects of the macro-porous alumina on the pellet-type sorbents in reducing the gas diffusion resistance into the pores were investigated. The results showed that the macro-porous alumina enhances the diffusion resistance, resulting in an improved sulfur capacity of CuO absorbents. Such effects were more significant on the pellet type CuO absorbents than the powder type. In addition, CO production was observed experimentally during the desulfurization reaction of carbonyl sulfide (COS) at low temperatures (similar to 473 K). Density functional theory calculations were also performed to understand the kinetics of desulfurization and CO production. The simulation results predicted that the kinetics of desulfurization is strongly affected by the local surface environment. The CO generated from C-O bond breaking from COS had a lower adsorption energy than the CO2 formation. These results suggest that the Cu-based desulfurization sorbent has potential catalytic activity for producing CO from COS dissociation.
ISSN:2076-3417
2076-3417
DOI:10.3390/app11177775