Population Structure Assessed Using Microsatellite and SNP Data: An Empirical Comparison in West African Cattle
Simple Summary Projection of genetic variability on geographic maps is a useful strategy to ascertain population structure and gene flow events when previous genetic information on the scenarios analyzed is not high. Here, we compared the performance of microsatellite sets and Single Nucleotide Poly...
Gespeichert in:
Veröffentlicht in: | Animals (Basel) 2021-01, Vol.11 (1), p.151, Article 151 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Simple Summary
Projection of genetic variability on geographic maps is a useful strategy to ascertain population structure and gene flow events when previous genetic information on the scenarios analyzed is not high. Here, we compared the performance of microsatellite sets and Single Nucleotide Polymorphism (SNP) arrays to identify the population structure and between-populations identity in a sample of West African cattle. Large SNP arrays were superior in detecting the population structure due to a more precise assessment of genotypic information of the individuals. However, the projection of genetic parameters on geographical maps was comparable between the SNP and microsatellite data. Geographic-based analyses of genetic variation areuseful inavoiding overinterpretation of the results obtained. Microsatellite markers can still be useful, particularly if the research focuses on non-model organisms or if either the funding or the availability of efficient hardware and software to handle large datasets is limited.
A sample of 185 West African cattle belonging to nine different taurine, sanga, and zebu populations was typed using a set of 33 microsatellites and the BovineHD BeadChip of Illumina. The information provided by each type of marker was summarized via clustering methods and principal component analyses (PCA). The aim was to assess differences in performance between both marker types for the identification of population structure and the projection of genetic variability on geographical maps. In general, both microsatellites and Single Nucleotide Polymorphism (SNP) allowed us to differentiate taurine cattle from zebu and sanga cattle, which, in turn, would form a single population. Pearson and Spearman correlation coefficients computed among the admixture coefficients (fitting K = 2) and the eigenvectors corresponding to the first two factors identified using PCA on both microsatellite and SNP data were statistically significant (most of them having p < 0.0001) and high. However, SNP data allowed for a better fine-scale identification of population structure within taurine cattle: Lagunaire cattle from Benin were separated from two different N'Dama cattle samples. Furthermore, when clustering analyses assumed the existence of two parental populations only (K = 2), the SNPs could differentiate a different genetic background in Lagunaire and N'Dama cattle. Although the two N'Dama cattle populations had very different breeding histories, the microsat |
---|---|
ISSN: | 2076-2615 2076-2615 |
DOI: | 10.3390/ani11010151 |