A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations

Climate change is profoundly affecting the global water cycle, increasing the likelihood and severity of extreme water-related events. Better decision-support systems are vital to accurately predict and monitor water-related environmental disasters and optimally manage water resources. These must in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in science (Lausanne) 2024-03, Vol.1
Hauptverfasser: Brocca, Luca, Barbetta, Silvia, Camici, Stefania, Ciabatta, Luca, Dari, Jacopo, Filippucci, Paolo, Massari, Christian, Modanesi, Sara, Tarpanelli, Angelica, Bonaccorsi, Bianca, Mosaffa, Hamidreza, Wagner, Wolfgang, Vreugdenhil, Mariette, Quast, Raphael, Alfieri, Lorenzo, Gabellani, Simone, Avanzi, Francesco, Rains, Dominik, Miralles, Diego G., Mantovani, Simone, Briese, Christian, Domeneghetti, Alessio, Jacob, Alexander, Castelli, Mariapina, Camps-Valls, Gustau, Volden, Espen, Fernandez, Diego
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Frontiers in science (Lausanne)
container_volume 1
creator Brocca, Luca
Barbetta, Silvia
Camici, Stefania
Ciabatta, Luca
Dari, Jacopo
Filippucci, Paolo
Massari, Christian
Modanesi, Sara
Tarpanelli, Angelica
Bonaccorsi, Bianca
Mosaffa, Hamidreza
Wagner, Wolfgang
Vreugdenhil, Mariette
Quast, Raphael
Alfieri, Lorenzo
Gabellani, Simone
Avanzi, Francesco
Rains, Dominik
Miralles, Diego G.
Mantovani, Simone
Briese, Christian
Domeneghetti, Alessio
Jacob, Alexander
Castelli, Mariapina
Camps-Valls, Gustau
Volden, Espen
Fernandez, Diego
description Climate change is profoundly affecting the global water cycle, increasing the likelihood and severity of extreme water-related events. Better decision-support systems are vital to accurately predict and monitor water-related environmental disasters and optimally manage water resources. These must integrate advances in remote sensing, in situ , and citizen observations with high-resolution Earth system modeling, artificial intelligence (AI), information and communication technologies, and high-performance computing. Digital Twin Earth (DTE) models are a ground-breaking solution offering digital replicas to monitor and simulate Earth processes with unprecedented spatiotemporal resolution. Advances in Earth observation (EO) satellite technology are pivotal, and here we provide a roadmap for the exploitation of these methods in a DTE for hydrology. The 4-dimensional DTE Hydrology datacube now fuses high-resolution EO data and advanced modeling of soil moisture, precipitation, evaporation, and river discharge, and here we report the latest validation data in the Mediterranean Basin. This system can now be explored to forecast flooding and landslides and to manage irrigation for precision agriculture. Large-scale implementation of such methods will require further advances to assess high-resolution products across different regions and climates; create and integrate compatible multidimensional datacubes, EO data retrieval algorithms, and models that are suitable across multiple scales; manage uncertainty both in EO data and models; enhance computational capacity via an interoperable, cloud-based processing environment embodying open data principles; and harness AI/machine learning. We outline how various planned satellite missions will further facilitate a DTE for hydrology toward global benefit if the scientific and technological challenges we identify are addressed.
doi_str_mv 10.3389/fsci.2023.1190191
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3389_fsci_2023_1190191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3389_fsci_2023_1190191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1331-ce4b13e52b769120715af619834d449ea3be85c0c07cbe19957c3889528c925f3</originalsourceid><addsrcrecordid>eNpNkMtOwzAQRS0EElXpB7DzD6R4PHnY7KpSHlIlNmUdOcZOjNK6sh2q_j0JdMHqPjR3FoeQe2BLRCEfbNRuyRnHJYBkIOGKzLgAzEpEdv3P35JFjF-MsdFXgosZiSv65FqXVE93J3eg3tLUGZpMCCam4Mb-pMZE9Vn35pEq2vZuf4yGukPyv7d2SEMYJ13wQ9vRzrVdNo59PyTnD3SjQuqob6IJ32pq4h25saqPZnHROfl43uzWr9n2_eVtvdpmGhAh0yZvAE3Bm6qUwFkFhbIlSIH5Z55Lo7AxotBMs0o3BqQsKo1CyIILLXlhcU7g768OPsZgbH0Mbq_CuQZWT-DqCVw9gasv4PAHQStiyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations</title><source>DOAJ Directory of Open Access Journals</source><creator>Brocca, Luca ; Barbetta, Silvia ; Camici, Stefania ; Ciabatta, Luca ; Dari, Jacopo ; Filippucci, Paolo ; Massari, Christian ; Modanesi, Sara ; Tarpanelli, Angelica ; Bonaccorsi, Bianca ; Mosaffa, Hamidreza ; Wagner, Wolfgang ; Vreugdenhil, Mariette ; Quast, Raphael ; Alfieri, Lorenzo ; Gabellani, Simone ; Avanzi, Francesco ; Rains, Dominik ; Miralles, Diego G. ; Mantovani, Simone ; Briese, Christian ; Domeneghetti, Alessio ; Jacob, Alexander ; Castelli, Mariapina ; Camps-Valls, Gustau ; Volden, Espen ; Fernandez, Diego</creator><creatorcontrib>Brocca, Luca ; Barbetta, Silvia ; Camici, Stefania ; Ciabatta, Luca ; Dari, Jacopo ; Filippucci, Paolo ; Massari, Christian ; Modanesi, Sara ; Tarpanelli, Angelica ; Bonaccorsi, Bianca ; Mosaffa, Hamidreza ; Wagner, Wolfgang ; Vreugdenhil, Mariette ; Quast, Raphael ; Alfieri, Lorenzo ; Gabellani, Simone ; Avanzi, Francesco ; Rains, Dominik ; Miralles, Diego G. ; Mantovani, Simone ; Briese, Christian ; Domeneghetti, Alessio ; Jacob, Alexander ; Castelli, Mariapina ; Camps-Valls, Gustau ; Volden, Espen ; Fernandez, Diego</creatorcontrib><description>Climate change is profoundly affecting the global water cycle, increasing the likelihood and severity of extreme water-related events. Better decision-support systems are vital to accurately predict and monitor water-related environmental disasters and optimally manage water resources. These must integrate advances in remote sensing, in situ , and citizen observations with high-resolution Earth system modeling, artificial intelligence (AI), information and communication technologies, and high-performance computing. Digital Twin Earth (DTE) models are a ground-breaking solution offering digital replicas to monitor and simulate Earth processes with unprecedented spatiotemporal resolution. Advances in Earth observation (EO) satellite technology are pivotal, and here we provide a roadmap for the exploitation of these methods in a DTE for hydrology. The 4-dimensional DTE Hydrology datacube now fuses high-resolution EO data and advanced modeling of soil moisture, precipitation, evaporation, and river discharge, and here we report the latest validation data in the Mediterranean Basin. This system can now be explored to forecast flooding and landslides and to manage irrigation for precision agriculture. Large-scale implementation of such methods will require further advances to assess high-resolution products across different regions and climates; create and integrate compatible multidimensional datacubes, EO data retrieval algorithms, and models that are suitable across multiple scales; manage uncertainty both in EO data and models; enhance computational capacity via an interoperable, cloud-based processing environment embodying open data principles; and harness AI/machine learning. We outline how various planned satellite missions will further facilitate a DTE for hydrology toward global benefit if the scientific and technological challenges we identify are addressed.</description><identifier>ISSN: 2813-6330</identifier><identifier>EISSN: 2813-6330</identifier><identifier>DOI: 10.3389/fsci.2023.1190191</identifier><language>eng</language><ispartof>Frontiers in science (Lausanne), 2024-03, Vol.1</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1331-ce4b13e52b769120715af619834d449ea3be85c0c07cbe19957c3889528c925f3</citedby><cites>FETCH-LOGICAL-c1331-ce4b13e52b769120715af619834d449ea3be85c0c07cbe19957c3889528c925f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27922,27923</link.rule.ids></links><search><creatorcontrib>Brocca, Luca</creatorcontrib><creatorcontrib>Barbetta, Silvia</creatorcontrib><creatorcontrib>Camici, Stefania</creatorcontrib><creatorcontrib>Ciabatta, Luca</creatorcontrib><creatorcontrib>Dari, Jacopo</creatorcontrib><creatorcontrib>Filippucci, Paolo</creatorcontrib><creatorcontrib>Massari, Christian</creatorcontrib><creatorcontrib>Modanesi, Sara</creatorcontrib><creatorcontrib>Tarpanelli, Angelica</creatorcontrib><creatorcontrib>Bonaccorsi, Bianca</creatorcontrib><creatorcontrib>Mosaffa, Hamidreza</creatorcontrib><creatorcontrib>Wagner, Wolfgang</creatorcontrib><creatorcontrib>Vreugdenhil, Mariette</creatorcontrib><creatorcontrib>Quast, Raphael</creatorcontrib><creatorcontrib>Alfieri, Lorenzo</creatorcontrib><creatorcontrib>Gabellani, Simone</creatorcontrib><creatorcontrib>Avanzi, Francesco</creatorcontrib><creatorcontrib>Rains, Dominik</creatorcontrib><creatorcontrib>Miralles, Diego G.</creatorcontrib><creatorcontrib>Mantovani, Simone</creatorcontrib><creatorcontrib>Briese, Christian</creatorcontrib><creatorcontrib>Domeneghetti, Alessio</creatorcontrib><creatorcontrib>Jacob, Alexander</creatorcontrib><creatorcontrib>Castelli, Mariapina</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><creatorcontrib>Volden, Espen</creatorcontrib><creatorcontrib>Fernandez, Diego</creatorcontrib><title>A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations</title><title>Frontiers in science (Lausanne)</title><description>Climate change is profoundly affecting the global water cycle, increasing the likelihood and severity of extreme water-related events. Better decision-support systems are vital to accurately predict and monitor water-related environmental disasters and optimally manage water resources. These must integrate advances in remote sensing, in situ , and citizen observations with high-resolution Earth system modeling, artificial intelligence (AI), information and communication technologies, and high-performance computing. Digital Twin Earth (DTE) models are a ground-breaking solution offering digital replicas to monitor and simulate Earth processes with unprecedented spatiotemporal resolution. Advances in Earth observation (EO) satellite technology are pivotal, and here we provide a roadmap for the exploitation of these methods in a DTE for hydrology. The 4-dimensional DTE Hydrology datacube now fuses high-resolution EO data and advanced modeling of soil moisture, precipitation, evaporation, and river discharge, and here we report the latest validation data in the Mediterranean Basin. This system can now be explored to forecast flooding and landslides and to manage irrigation for precision agriculture. Large-scale implementation of such methods will require further advances to assess high-resolution products across different regions and climates; create and integrate compatible multidimensional datacubes, EO data retrieval algorithms, and models that are suitable across multiple scales; manage uncertainty both in EO data and models; enhance computational capacity via an interoperable, cloud-based processing environment embodying open data principles; and harness AI/machine learning. We outline how various planned satellite missions will further facilitate a DTE for hydrology toward global benefit if the scientific and technological challenges we identify are addressed.</description><issn>2813-6330</issn><issn>2813-6330</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAQRS0EElXpB7DzD6R4PHnY7KpSHlIlNmUdOcZOjNK6sh2q_j0JdMHqPjR3FoeQe2BLRCEfbNRuyRnHJYBkIOGKzLgAzEpEdv3P35JFjF-MsdFXgosZiSv65FqXVE93J3eg3tLUGZpMCCam4Mb-pMZE9Vn35pEq2vZuf4yGukPyv7d2SEMYJ13wQ9vRzrVdNo59PyTnD3SjQuqob6IJ32pq4h25saqPZnHROfl43uzWr9n2_eVtvdpmGhAh0yZvAE3Bm6qUwFkFhbIlSIH5Z55Lo7AxotBMs0o3BqQsKo1CyIILLXlhcU7g768OPsZgbH0Mbq_CuQZWT-DqCVw9gasv4PAHQStiyA</recordid><startdate>20240305</startdate><enddate>20240305</enddate><creator>Brocca, Luca</creator><creator>Barbetta, Silvia</creator><creator>Camici, Stefania</creator><creator>Ciabatta, Luca</creator><creator>Dari, Jacopo</creator><creator>Filippucci, Paolo</creator><creator>Massari, Christian</creator><creator>Modanesi, Sara</creator><creator>Tarpanelli, Angelica</creator><creator>Bonaccorsi, Bianca</creator><creator>Mosaffa, Hamidreza</creator><creator>Wagner, Wolfgang</creator><creator>Vreugdenhil, Mariette</creator><creator>Quast, Raphael</creator><creator>Alfieri, Lorenzo</creator><creator>Gabellani, Simone</creator><creator>Avanzi, Francesco</creator><creator>Rains, Dominik</creator><creator>Miralles, Diego G.</creator><creator>Mantovani, Simone</creator><creator>Briese, Christian</creator><creator>Domeneghetti, Alessio</creator><creator>Jacob, Alexander</creator><creator>Castelli, Mariapina</creator><creator>Camps-Valls, Gustau</creator><creator>Volden, Espen</creator><creator>Fernandez, Diego</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240305</creationdate><title>A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations</title><author>Brocca, Luca ; Barbetta, Silvia ; Camici, Stefania ; Ciabatta, Luca ; Dari, Jacopo ; Filippucci, Paolo ; Massari, Christian ; Modanesi, Sara ; Tarpanelli, Angelica ; Bonaccorsi, Bianca ; Mosaffa, Hamidreza ; Wagner, Wolfgang ; Vreugdenhil, Mariette ; Quast, Raphael ; Alfieri, Lorenzo ; Gabellani, Simone ; Avanzi, Francesco ; Rains, Dominik ; Miralles, Diego G. ; Mantovani, Simone ; Briese, Christian ; Domeneghetti, Alessio ; Jacob, Alexander ; Castelli, Mariapina ; Camps-Valls, Gustau ; Volden, Espen ; Fernandez, Diego</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1331-ce4b13e52b769120715af619834d449ea3be85c0c07cbe19957c3889528c925f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brocca, Luca</creatorcontrib><creatorcontrib>Barbetta, Silvia</creatorcontrib><creatorcontrib>Camici, Stefania</creatorcontrib><creatorcontrib>Ciabatta, Luca</creatorcontrib><creatorcontrib>Dari, Jacopo</creatorcontrib><creatorcontrib>Filippucci, Paolo</creatorcontrib><creatorcontrib>Massari, Christian</creatorcontrib><creatorcontrib>Modanesi, Sara</creatorcontrib><creatorcontrib>Tarpanelli, Angelica</creatorcontrib><creatorcontrib>Bonaccorsi, Bianca</creatorcontrib><creatorcontrib>Mosaffa, Hamidreza</creatorcontrib><creatorcontrib>Wagner, Wolfgang</creatorcontrib><creatorcontrib>Vreugdenhil, Mariette</creatorcontrib><creatorcontrib>Quast, Raphael</creatorcontrib><creatorcontrib>Alfieri, Lorenzo</creatorcontrib><creatorcontrib>Gabellani, Simone</creatorcontrib><creatorcontrib>Avanzi, Francesco</creatorcontrib><creatorcontrib>Rains, Dominik</creatorcontrib><creatorcontrib>Miralles, Diego G.</creatorcontrib><creatorcontrib>Mantovani, Simone</creatorcontrib><creatorcontrib>Briese, Christian</creatorcontrib><creatorcontrib>Domeneghetti, Alessio</creatorcontrib><creatorcontrib>Jacob, Alexander</creatorcontrib><creatorcontrib>Castelli, Mariapina</creatorcontrib><creatorcontrib>Camps-Valls, Gustau</creatorcontrib><creatorcontrib>Volden, Espen</creatorcontrib><creatorcontrib>Fernandez, Diego</creatorcontrib><collection>CrossRef</collection><jtitle>Frontiers in science (Lausanne)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brocca, Luca</au><au>Barbetta, Silvia</au><au>Camici, Stefania</au><au>Ciabatta, Luca</au><au>Dari, Jacopo</au><au>Filippucci, Paolo</au><au>Massari, Christian</au><au>Modanesi, Sara</au><au>Tarpanelli, Angelica</au><au>Bonaccorsi, Bianca</au><au>Mosaffa, Hamidreza</au><au>Wagner, Wolfgang</au><au>Vreugdenhil, Mariette</au><au>Quast, Raphael</au><au>Alfieri, Lorenzo</au><au>Gabellani, Simone</au><au>Avanzi, Francesco</au><au>Rains, Dominik</au><au>Miralles, Diego G.</au><au>Mantovani, Simone</au><au>Briese, Christian</au><au>Domeneghetti, Alessio</au><au>Jacob, Alexander</au><au>Castelli, Mariapina</au><au>Camps-Valls, Gustau</au><au>Volden, Espen</au><au>Fernandez, Diego</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations</atitle><jtitle>Frontiers in science (Lausanne)</jtitle><date>2024-03-05</date><risdate>2024</risdate><volume>1</volume><issn>2813-6330</issn><eissn>2813-6330</eissn><abstract>Climate change is profoundly affecting the global water cycle, increasing the likelihood and severity of extreme water-related events. Better decision-support systems are vital to accurately predict and monitor water-related environmental disasters and optimally manage water resources. These must integrate advances in remote sensing, in situ , and citizen observations with high-resolution Earth system modeling, artificial intelligence (AI), information and communication technologies, and high-performance computing. Digital Twin Earth (DTE) models are a ground-breaking solution offering digital replicas to monitor and simulate Earth processes with unprecedented spatiotemporal resolution. Advances in Earth observation (EO) satellite technology are pivotal, and here we provide a roadmap for the exploitation of these methods in a DTE for hydrology. The 4-dimensional DTE Hydrology datacube now fuses high-resolution EO data and advanced modeling of soil moisture, precipitation, evaporation, and river discharge, and here we report the latest validation data in the Mediterranean Basin. This system can now be explored to forecast flooding and landslides and to manage irrigation for precision agriculture. Large-scale implementation of such methods will require further advances to assess high-resolution products across different regions and climates; create and integrate compatible multidimensional datacubes, EO data retrieval algorithms, and models that are suitable across multiple scales; manage uncertainty both in EO data and models; enhance computational capacity via an interoperable, cloud-based processing environment embodying open data principles; and harness AI/machine learning. We outline how various planned satellite missions will further facilitate a DTE for hydrology toward global benefit if the scientific and technological challenges we identify are addressed.</abstract><doi>10.3389/fsci.2023.1190191</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2813-6330
ispartof Frontiers in science (Lausanne), 2024-03, Vol.1
issn 2813-6330
2813-6330
language eng
recordid cdi_crossref_primary_10_3389_fsci_2023_1190191
source DOAJ Directory of Open Access Journals
title A Digital Twin of the terrestrial water cycle: a glimpse into the future through high-resolution Earth observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A12%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Digital%20Twin%20of%20the%20terrestrial%20water%20cycle:%20a%20glimpse%20into%20the%20future%20through%20high-resolution%20Earth%20observations&rft.jtitle=Frontiers%20in%20science%20(Lausanne)&rft.au=Brocca,%20Luca&rft.date=2024-03-05&rft.volume=1&rft.issn=2813-6330&rft.eissn=2813-6330&rft_id=info:doi/10.3389/fsci.2023.1190191&rft_dat=%3Ccrossref%3E10_3389_fsci_2023_1190191%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true