Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown

We used crowdsourcing (CS) to examine how COVID-19 lockdown affects the content of dreams and nightmares. The CS took place on the sixth week of the lockdown. Over the course of 1 week, 4,275 respondents (mean age 43, SD = 14 years) assessed their sleep, and 811 reported their dream content. Overall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in psychology 2020-10, Vol.11, p.573961-573961, Article 573961
Hauptverfasser: Pesonen, Anu-Katriina, Lipsanen, Jari, Halonen, Risto, Elovainio, Marko, Sandman, Nils, Makela, Juha-Matti, Antila, Minea, Bechard, Deni, Ollila, Hanna M., Kuula, Liisa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 573961
container_issue
container_start_page 573961
container_title Frontiers in psychology
container_volume 11
creator Pesonen, Anu-Katriina
Lipsanen, Jari
Halonen, Risto
Elovainio, Marko
Sandman, Nils
Makela, Juha-Matti
Antila, Minea
Bechard, Deni
Ollila, Hanna M.
Kuula, Liisa
description We used crowdsourcing (CS) to examine how COVID-19 lockdown affects the content of dreams and nightmares. The CS took place on the sixth week of the lockdown. Over the course of 1 week, 4,275 respondents (mean age 43, SD = 14 years) assessed their sleep, and 811 reported their dream content. Overall, respondents slept substantially more (54.2%) but reported an average increase of awakenings (28.6%) and nightmares (26%) from the pre-pandemic situation. We transcribed the content of the dreams into word lists and performed unsupervised computational network and cluster analysis of word associations, which suggested 33 dream clusters including 20 bad dream clusters, of which 55% were pandemic-specific (e.g., Disease Management, Disregard of Distancing, Elderly in Trouble). The dream-association networks were more accentuated for those who reported an increase in perceived stress. This CS survey on dream-association networks and pandemic stress introduces novel, collectively shared COVID-19 bad dream contents.
doi_str_mv 10.3389/fpsyg.2020.573961
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3389_fpsyg_2020_573961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_76453575c27a45ec94fadc8f2c838ae2</doaj_id><sourcerecordid>2455836816</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-749690f431eb5500d7178253fb536d0cd471aac079698c204d55870beb5afdc93</originalsourceid><addsrcrecordid>eNqNkUtv1DAURiMEolXpD2CXJRLK1M_YYYFUZYCONGJYAFvL8WPqNrEHO-lo_j1OU1V0hze2fM8919ZXFO8hWGHMmyt7SKf9CgEEVpThpoavinNY16SCgPHX_5zPisuU7kBeJMMAvS3OMIaQIQLOi90P6bUZnCrX0cghfSq_m_EY4n157WV_Si6VwS61sg1-NH4s11N0fl-Ot6Zsd7836wo25Taoex2O_l3xxso-mcun_aL49fXLz_am2u6-bdrrbaUIQWPFSFM3wBIMTUcpAJpBxhHFtqO41kBpwqCUCrCMcYUA0ZRyBrpMS6tVgy-KzeLVQd6JQ3SDjCcRpBOPFyHuhYyjU70RrCYUU0YVYpJQoxpipVbcIsUxlwZl1-fFdZi6wWiV_xhl_0L6suLdrdiHB8FoDSios-DDkyCGP5NJoxhcUqbvpTdhSgKR_HpcczijcEFVDClFY5_HQCDmXMVjrmLOVSy55p6PS8_RdMEm5YxX5rkv50oZo4TyOeKZ5v9Pt26Uowu-DZMf8V8i07Sd</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455836816</pqid></control><display><type>article</type><title>Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2020&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Pesonen, Anu-Katriina ; Lipsanen, Jari ; Halonen, Risto ; Elovainio, Marko ; Sandman, Nils ; Makela, Juha-Matti ; Antila, Minea ; Bechard, Deni ; Ollila, Hanna M. ; Kuula, Liisa</creator><creatorcontrib>Pesonen, Anu-Katriina ; Lipsanen, Jari ; Halonen, Risto ; Elovainio, Marko ; Sandman, Nils ; Makela, Juha-Matti ; Antila, Minea ; Bechard, Deni ; Ollila, Hanna M. ; Kuula, Liisa</creatorcontrib><description>We used crowdsourcing (CS) to examine how COVID-19 lockdown affects the content of dreams and nightmares. The CS took place on the sixth week of the lockdown. Over the course of 1 week, 4,275 respondents (mean age 43, SD = 14 years) assessed their sleep, and 811 reported their dream content. Overall, respondents slept substantially more (54.2%) but reported an average increase of awakenings (28.6%) and nightmares (26%) from the pre-pandemic situation. We transcribed the content of the dreams into word lists and performed unsupervised computational network and cluster analysis of word associations, which suggested 33 dream clusters including 20 bad dream clusters, of which 55% were pandemic-specific (e.g., Disease Management, Disregard of Distancing, Elderly in Trouble). The dream-association networks were more accentuated for those who reported an increase in perceived stress. This CS survey on dream-association networks and pandemic stress introduces novel, collectively shared COVID-19 bad dream contents.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2020.573961</identifier><identifier>PMID: 33117240</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>cluster ; COVID-19 ; crowdsourcing ; dream ; network analysis ; Psychology ; Psychology, Multidisciplinary ; sleep ; Social Sciences</subject><ispartof>Frontiers in psychology, 2020-10, Vol.11, p.573961-573961, Article 573961</ispartof><rights>Copyright © 2020 Pesonen, Lipsanen, Halonen, Elovainio, Sandman, Mäkelä, Antila, Béchard, Ollila and Kuula. 2020 Pesonen, Lipsanen, Halonen, Elovainio, Sandman, Mäkelä, Antila, Béchard, Ollila and Kuula</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>65</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000577545800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c442t-749690f431eb5500d7178253fb536d0cd471aac079698c204d55870beb5afdc93</citedby><cites>FETCH-LOGICAL-c442t-749690f431eb5500d7178253fb536d0cd471aac079698c204d55870beb5afdc93</cites><orcidid>0000-0003-0746-2745 ; 0000-0002-0662-6261 ; 0000-0001-8926-8748 ; 0000-0002-2999-8789 ; 0000-0002-5302-6429 ; 0000-0002-1401-1910</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560506/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7560506/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,28254,53796,53798</link.rule.ids></links><search><creatorcontrib>Pesonen, Anu-Katriina</creatorcontrib><creatorcontrib>Lipsanen, Jari</creatorcontrib><creatorcontrib>Halonen, Risto</creatorcontrib><creatorcontrib>Elovainio, Marko</creatorcontrib><creatorcontrib>Sandman, Nils</creatorcontrib><creatorcontrib>Makela, Juha-Matti</creatorcontrib><creatorcontrib>Antila, Minea</creatorcontrib><creatorcontrib>Bechard, Deni</creatorcontrib><creatorcontrib>Ollila, Hanna M.</creatorcontrib><creatorcontrib>Kuula, Liisa</creatorcontrib><title>Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown</title><title>Frontiers in psychology</title><addtitle>FRONT PSYCHOL</addtitle><description>We used crowdsourcing (CS) to examine how COVID-19 lockdown affects the content of dreams and nightmares. The CS took place on the sixth week of the lockdown. Over the course of 1 week, 4,275 respondents (mean age 43, SD = 14 years) assessed their sleep, and 811 reported their dream content. Overall, respondents slept substantially more (54.2%) but reported an average increase of awakenings (28.6%) and nightmares (26%) from the pre-pandemic situation. We transcribed the content of the dreams into word lists and performed unsupervised computational network and cluster analysis of word associations, which suggested 33 dream clusters including 20 bad dream clusters, of which 55% were pandemic-specific (e.g., Disease Management, Disregard of Distancing, Elderly in Trouble). The dream-association networks were more accentuated for those who reported an increase in perceived stress. This CS survey on dream-association networks and pandemic stress introduces novel, collectively shared COVID-19 bad dream contents.</description><subject>cluster</subject><subject>COVID-19</subject><subject>crowdsourcing</subject><subject>dream</subject><subject>network analysis</subject><subject>Psychology</subject><subject>Psychology, Multidisciplinary</subject><subject>sleep</subject><subject>Social Sciences</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ARHDP</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtv1DAURiMEolXpD2CXJRLK1M_YYYFUZYCONGJYAFvL8WPqNrEHO-lo_j1OU1V0hze2fM8919ZXFO8hWGHMmyt7SKf9CgEEVpThpoavinNY16SCgPHX_5zPisuU7kBeJMMAvS3OMIaQIQLOi90P6bUZnCrX0cghfSq_m_EY4n157WV_Si6VwS61sg1-NH4s11N0fl-Ot6Zsd7836wo25Taoex2O_l3xxso-mcun_aL49fXLz_am2u6-bdrrbaUIQWPFSFM3wBIMTUcpAJpBxhHFtqO41kBpwqCUCrCMcYUA0ZRyBrpMS6tVgy-KzeLVQd6JQ3SDjCcRpBOPFyHuhYyjU70RrCYUU0YVYpJQoxpipVbcIsUxlwZl1-fFdZi6wWiV_xhl_0L6suLdrdiHB8FoDSios-DDkyCGP5NJoxhcUqbvpTdhSgKR_HpcczijcEFVDClFY5_HQCDmXMVjrmLOVSy55p6PS8_RdMEm5YxX5rkv50oZo4TyOeKZ5v9Pt26Uowu-DZMf8V8i07Sd</recordid><startdate>20201001</startdate><enddate>20201001</enddate><creator>Pesonen, Anu-Katriina</creator><creator>Lipsanen, Jari</creator><creator>Halonen, Risto</creator><creator>Elovainio, Marko</creator><creator>Sandman, Nils</creator><creator>Makela, Juha-Matti</creator><creator>Antila, Minea</creator><creator>Bechard, Deni</creator><creator>Ollila, Hanna M.</creator><creator>Kuula, Liisa</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>17B</scope><scope>ARHDP</scope><scope>BLEPL</scope><scope>DVR</scope><scope>EGQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0746-2745</orcidid><orcidid>https://orcid.org/0000-0002-0662-6261</orcidid><orcidid>https://orcid.org/0000-0001-8926-8748</orcidid><orcidid>https://orcid.org/0000-0002-2999-8789</orcidid><orcidid>https://orcid.org/0000-0002-5302-6429</orcidid><orcidid>https://orcid.org/0000-0002-1401-1910</orcidid></search><sort><creationdate>20201001</creationdate><title>Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown</title><author>Pesonen, Anu-Katriina ; Lipsanen, Jari ; Halonen, Risto ; Elovainio, Marko ; Sandman, Nils ; Makela, Juha-Matti ; Antila, Minea ; Bechard, Deni ; Ollila, Hanna M. ; Kuula, Liisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-749690f431eb5500d7178253fb536d0cd471aac079698c204d55870beb5afdc93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>cluster</topic><topic>COVID-19</topic><topic>crowdsourcing</topic><topic>dream</topic><topic>network analysis</topic><topic>Psychology</topic><topic>Psychology, Multidisciplinary</topic><topic>sleep</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pesonen, Anu-Katriina</creatorcontrib><creatorcontrib>Lipsanen, Jari</creatorcontrib><creatorcontrib>Halonen, Risto</creatorcontrib><creatorcontrib>Elovainio, Marko</creatorcontrib><creatorcontrib>Sandman, Nils</creatorcontrib><creatorcontrib>Makela, Juha-Matti</creatorcontrib><creatorcontrib>Antila, Minea</creatorcontrib><creatorcontrib>Bechard, Deni</creatorcontrib><creatorcontrib>Ollila, Hanna M.</creatorcontrib><creatorcontrib>Kuula, Liisa</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science - Social Sciences Citation Index – 2020</collection><collection>Web of Science Core Collection</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pesonen, Anu-Katriina</au><au>Lipsanen, Jari</au><au>Halonen, Risto</au><au>Elovainio, Marko</au><au>Sandman, Nils</au><au>Makela, Juha-Matti</au><au>Antila, Minea</au><au>Bechard, Deni</au><au>Ollila, Hanna M.</au><au>Kuula, Liisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown</atitle><jtitle>Frontiers in psychology</jtitle><stitle>FRONT PSYCHOL</stitle><date>2020-10-01</date><risdate>2020</risdate><volume>11</volume><spage>573961</spage><epage>573961</epage><pages>573961-573961</pages><artnum>573961</artnum><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>We used crowdsourcing (CS) to examine how COVID-19 lockdown affects the content of dreams and nightmares. The CS took place on the sixth week of the lockdown. Over the course of 1 week, 4,275 respondents (mean age 43, SD = 14 years) assessed their sleep, and 811 reported their dream content. Overall, respondents slept substantially more (54.2%) but reported an average increase of awakenings (28.6%) and nightmares (26%) from the pre-pandemic situation. We transcribed the content of the dreams into word lists and performed unsupervised computational network and cluster analysis of word associations, which suggested 33 dream clusters including 20 bad dream clusters, of which 55% were pandemic-specific (e.g., Disease Management, Disregard of Distancing, Elderly in Trouble). The dream-association networks were more accentuated for those who reported an increase in perceived stress. This CS survey on dream-association networks and pandemic stress introduces novel, collectively shared COVID-19 bad dream contents.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33117240</pmid><doi>10.3389/fpsyg.2020.573961</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-0746-2745</orcidid><orcidid>https://orcid.org/0000-0002-0662-6261</orcidid><orcidid>https://orcid.org/0000-0001-8926-8748</orcidid><orcidid>https://orcid.org/0000-0002-2999-8789</orcidid><orcidid>https://orcid.org/0000-0002-5302-6429</orcidid><orcidid>https://orcid.org/0000-0002-1401-1910</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-1078
ispartof Frontiers in psychology, 2020-10, Vol.11, p.573961-573961, Article 573961
issn 1664-1078
1664-1078
language eng
recordid cdi_crossref_primary_10_3389_fpsyg_2020_573961
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; PubMed Central; Web of Science - Social Sciences Citation Index – 2020<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects cluster
COVID-19
crowdsourcing
dream
network analysis
Psychology
Psychology, Multidisciplinary
sleep
Social Sciences
title Pandemic Dreams: Network Analysis of Dream Content During the COVID-19 Lockdown
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T21%3A14%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pandemic%20Dreams:%20Network%20Analysis%20of%20Dream%20Content%20During%20the%20COVID-19%20Lockdown&rft.jtitle=Frontiers%20in%20psychology&rft.au=Pesonen,%20Anu-Katriina&rft.date=2020-10-01&rft.volume=11&rft.spage=573961&rft.epage=573961&rft.pages=573961-573961&rft.artnum=573961&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2020.573961&rft_dat=%3Cproquest_cross%3E2455836816%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455836816&rft_id=info:pmid/33117240&rft_doaj_id=oai_doaj_org_article_76453575c27a45ec94fadc8f2c838ae2&rfr_iscdi=true