Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants
Background: Bronchopulmonary dysplasia is a common pulmonary disease in newborns and is one of the main causes of death. The aim of this study was to build a new simple-to-use nomogram to screen high-risk populations. Methods: In this single-center retrospective study performed from January 2017 to...
Gespeichert in:
Veröffentlicht in: | Frontiers in pediatrics 2021-03, Vol.9, p.648828-648828, Article 648828 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 648828 |
---|---|
container_issue | |
container_start_page | 648828 |
container_title | Frontiers in pediatrics |
container_volume | 9 |
creator | Zhang, Jingdi Luo, Chenghan Lei, Mengyuan Shi, Zanyang Cheng, Xinru Wang, Lili Shen, Min Zhang, Yixia Zhao, Min Wang, Li Zhang, Shanshan Mao, Fengxia Zhang, Ju Xu, Qianya Han, Suge Zhang, Qian |
description | Background: Bronchopulmonary dysplasia is a common pulmonary disease in newborns and is one of the main causes of death. The aim of this study was to build a new simple-to-use nomogram to screen high-risk populations.
Methods: In this single-center retrospective study performed from January 2017 to December 2020, we reviewed data on very-low-birth-weight infants whose gestational ages were below 32 weeks. LASSO regression was used to select variables for the risk model. Then, we used multivariable logistic regression to build the prediction model incorporating these selected features. Discrimination was assessed by the C-index, and and calibration of the model was assessed by and calibration curve and the Hosmer-Lemeshow test.
Results: The LASSO regression identified gestational age, duration of ventilation and serum NT-proBNP in the 1st week as significant predictors of BPD. The nomogram-illustrated model showed good discrimination and calibration. The C-index was 0.853 (95% CI: 0.851-0.854) in the training set and 0.855 (95% CI: 0.77-0.94) in the validation set. The calibration curve and Hosmer-Lemeshow test results showed good calibration between the predictions of the nomogram and the actual observations.
Conclusion: We demonstrated a simple-to-use nomogram for predicting BPD in the early stage. It may help clinicians recognize high-risk populations. |
doi_str_mv | 10.3389/fped.2021.648828 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3389_fped_2021_648828</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_b271b43aff7841a5888a2c77f0a4b7ed</doaj_id><sourcerecordid>2508890132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-2d1a80dea73917c0f7f968fde79fef07b75c5c670e1bdbf807c88527bc8cd3e73</originalsourceid><addsrcrecordid>eNqNks1vFCEYxidGY5vauyfD0cTMysfMwFxM7NaPTTbqQeuRMPCySzMDI7Bt9r-X7damvckFAs_ze9_wvFX1muAFY6J_b2cwC4opWXSNEFQ8q04p7buasg4_f3Q-qc5TusZl9Ry3pH1ZnRQ_6Rrcn1bpEm5gDPMEPiPlDbpSozMqu-BRsEihb2EKm6gmZENEPyIYp7PzG3QRg9fbMO_GKXgV9-hyn-ZRJaeQ8-gK4r5eh9v6wsW8rX-D22wzWnmrfE6vqhdWjQnO7_ez6tfnTz-XX-v19y-r5cd1rZuO5poaogQ2oDjrCdfYctt3whrgvQWL-cBb3eqOYyCDGazAXAvRUj5ooQ0Dzs6q1ZFrgrqWc3RT6VMG5eTdRYgbqWJ2egQ5UE6GhilruWiIaoUQimrOLVbNwMEU1ocja94NExhdviuq8Qn06Yt3W7kJN1JgwhkhBfD2HhDDnx2kLCeXNIyj8hB2SdIWC9FjwmiR4qNUx5BSBPtQhmB5iF4eopeH6OUx-mJ587i9B8O_oItAHAW3MASbtAOv4UFWZqNjbU8FP4wJWbp8NwHLsPO5WN_9v5X9BYbfzjo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2508890132</pqid></control><display><type>article</type><title>Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>PubMed Central</source><creator>Zhang, Jingdi ; Luo, Chenghan ; Lei, Mengyuan ; Shi, Zanyang ; Cheng, Xinru ; Wang, Lili ; Shen, Min ; Zhang, Yixia ; Zhao, Min ; Wang, Li ; Zhang, Shanshan ; Mao, Fengxia ; Zhang, Ju ; Xu, Qianya ; Han, Suge ; Zhang, Qian</creator><creatorcontrib>Zhang, Jingdi ; Luo, Chenghan ; Lei, Mengyuan ; Shi, Zanyang ; Cheng, Xinru ; Wang, Lili ; Shen, Min ; Zhang, Yixia ; Zhao, Min ; Wang, Li ; Zhang, Shanshan ; Mao, Fengxia ; Zhang, Ju ; Xu, Qianya ; Han, Suge ; Zhang, Qian</creatorcontrib><description>Background: Bronchopulmonary dysplasia is a common pulmonary disease in newborns and is one of the main causes of death. The aim of this study was to build a new simple-to-use nomogram to screen high-risk populations.
Methods: In this single-center retrospective study performed from January 2017 to December 2020, we reviewed data on very-low-birth-weight infants whose gestational ages were below 32 weeks. LASSO regression was used to select variables for the risk model. Then, we used multivariable logistic regression to build the prediction model incorporating these selected features. Discrimination was assessed by the C-index, and and calibration of the model was assessed by and calibration curve and the Hosmer-Lemeshow test.
Results: The LASSO regression identified gestational age, duration of ventilation and serum NT-proBNP in the 1st week as significant predictors of BPD. The nomogram-illustrated model showed good discrimination and calibration. The C-index was 0.853 (95% CI: 0.851-0.854) in the training set and 0.855 (95% CI: 0.77-0.94) in the validation set. The calibration curve and Hosmer-Lemeshow test results showed good calibration between the predictions of the nomogram and the actual observations.
Conclusion: We demonstrated a simple-to-use nomogram for predicting BPD in the early stage. It may help clinicians recognize high-risk populations.</description><identifier>ISSN: 2296-2360</identifier><identifier>EISSN: 2296-2360</identifier><identifier>DOI: 10.3389/fped.2021.648828</identifier><identifier>PMID: 33816409</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>bronchopulmonary dysplasia ; LASSO regression ; Life Sciences & Biomedicine ; nomogram ; NT-proBNP level ; Pediatrics ; Science & Technology ; very-low-birth-weight infants</subject><ispartof>Frontiers in pediatrics, 2021-03, Vol.9, p.648828-648828, Article 648828</ispartof><rights>Copyright © 2021 Zhang, Luo, Lei, Shi, Cheng, Wang, Shen, Zhang, Zhao, Wang, Zhang, Mao, Zhang, Xu, Han and Zhang.</rights><rights>Copyright © 2021 Zhang, Luo, Lei, Shi, Cheng, Wang, Shen, Zhang, Zhao, Wang, Zhang, Mao, Zhang, Xu, Han and Zhang. 2021 Zhang, Luo, Lei, Shi, Cheng, Wang, Shen, Zhang, Zhao, Wang, Zhang, Mao, Zhang, Xu, Han and Zhang</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>13</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000635928700001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c462t-2d1a80dea73917c0f7f968fde79fef07b75c5c670e1bdbf807c88527bc8cd3e73</citedby><cites>FETCH-LOGICAL-c462t-2d1a80dea73917c0f7f968fde79fef07b75c5c670e1bdbf807c88527bc8cd3e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017311/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8017311/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2116,27931,27932,39265,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33816409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Jingdi</creatorcontrib><creatorcontrib>Luo, Chenghan</creatorcontrib><creatorcontrib>Lei, Mengyuan</creatorcontrib><creatorcontrib>Shi, Zanyang</creatorcontrib><creatorcontrib>Cheng, Xinru</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Shen, Min</creatorcontrib><creatorcontrib>Zhang, Yixia</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zhang, Shanshan</creatorcontrib><creatorcontrib>Mao, Fengxia</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Xu, Qianya</creatorcontrib><creatorcontrib>Han, Suge</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><title>Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants</title><title>Frontiers in pediatrics</title><addtitle>FRONT PEDIATR</addtitle><addtitle>Front Pediatr</addtitle><description>Background: Bronchopulmonary dysplasia is a common pulmonary disease in newborns and is one of the main causes of death. The aim of this study was to build a new simple-to-use nomogram to screen high-risk populations.
Methods: In this single-center retrospective study performed from January 2017 to December 2020, we reviewed data on very-low-birth-weight infants whose gestational ages were below 32 weeks. LASSO regression was used to select variables for the risk model. Then, we used multivariable logistic regression to build the prediction model incorporating these selected features. Discrimination was assessed by the C-index, and and calibration of the model was assessed by and calibration curve and the Hosmer-Lemeshow test.
Results: The LASSO regression identified gestational age, duration of ventilation and serum NT-proBNP in the 1st week as significant predictors of BPD. The nomogram-illustrated model showed good discrimination and calibration. The C-index was 0.853 (95% CI: 0.851-0.854) in the training set and 0.855 (95% CI: 0.77-0.94) in the validation set. The calibration curve and Hosmer-Lemeshow test results showed good calibration between the predictions of the nomogram and the actual observations.
Conclusion: We demonstrated a simple-to-use nomogram for predicting BPD in the early stage. It may help clinicians recognize high-risk populations.</description><subject>bronchopulmonary dysplasia</subject><subject>LASSO regression</subject><subject>Life Sciences & Biomedicine</subject><subject>nomogram</subject><subject>NT-proBNP level</subject><subject>Pediatrics</subject><subject>Science & Technology</subject><subject>very-low-birth-weight infants</subject><issn>2296-2360</issn><issn>2296-2360</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNks1vFCEYxidGY5vauyfD0cTMysfMwFxM7NaPTTbqQeuRMPCySzMDI7Bt9r-X7damvckFAs_ze9_wvFX1muAFY6J_b2cwC4opWXSNEFQ8q04p7buasg4_f3Q-qc5TusZl9Ry3pH1ZnRQ_6Rrcn1bpEm5gDPMEPiPlDbpSozMqu-BRsEihb2EKm6gmZENEPyIYp7PzG3QRg9fbMO_GKXgV9-hyn-ZRJaeQ8-gK4r5eh9v6wsW8rX-D22wzWnmrfE6vqhdWjQnO7_ez6tfnTz-XX-v19y-r5cd1rZuO5poaogQ2oDjrCdfYctt3whrgvQWL-cBb3eqOYyCDGazAXAvRUj5ooQ0Dzs6q1ZFrgrqWc3RT6VMG5eTdRYgbqWJ2egQ5UE6GhilruWiIaoUQimrOLVbNwMEU1ocja94NExhdviuq8Qn06Yt3W7kJN1JgwhkhBfD2HhDDnx2kLCeXNIyj8hB2SdIWC9FjwmiR4qNUx5BSBPtQhmB5iF4eopeH6OUx-mJ587i9B8O_oItAHAW3MASbtAOv4UFWZqNjbU8FP4wJWbp8NwHLsPO5WN_9v5X9BYbfzjo</recordid><startdate>20210319</startdate><enddate>20210319</enddate><creator>Zhang, Jingdi</creator><creator>Luo, Chenghan</creator><creator>Lei, Mengyuan</creator><creator>Shi, Zanyang</creator><creator>Cheng, Xinru</creator><creator>Wang, Lili</creator><creator>Shen, Min</creator><creator>Zhang, Yixia</creator><creator>Zhao, Min</creator><creator>Wang, Li</creator><creator>Zhang, Shanshan</creator><creator>Mao, Fengxia</creator><creator>Zhang, Ju</creator><creator>Xu, Qianya</creator><creator>Han, Suge</creator><creator>Zhang, Qian</creator><general>Frontiers Media Sa</general><general>Frontiers Media S.A</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210319</creationdate><title>Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants</title><author>Zhang, Jingdi ; Luo, Chenghan ; Lei, Mengyuan ; Shi, Zanyang ; Cheng, Xinru ; Wang, Lili ; Shen, Min ; Zhang, Yixia ; Zhao, Min ; Wang, Li ; Zhang, Shanshan ; Mao, Fengxia ; Zhang, Ju ; Xu, Qianya ; Han, Suge ; Zhang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-2d1a80dea73917c0f7f968fde79fef07b75c5c670e1bdbf807c88527bc8cd3e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>bronchopulmonary dysplasia</topic><topic>LASSO regression</topic><topic>Life Sciences & Biomedicine</topic><topic>nomogram</topic><topic>NT-proBNP level</topic><topic>Pediatrics</topic><topic>Science & Technology</topic><topic>very-low-birth-weight infants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jingdi</creatorcontrib><creatorcontrib>Luo, Chenghan</creatorcontrib><creatorcontrib>Lei, Mengyuan</creatorcontrib><creatorcontrib>Shi, Zanyang</creatorcontrib><creatorcontrib>Cheng, Xinru</creatorcontrib><creatorcontrib>Wang, Lili</creatorcontrib><creatorcontrib>Shen, Min</creatorcontrib><creatorcontrib>Zhang, Yixia</creatorcontrib><creatorcontrib>Zhao, Min</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zhang, Shanshan</creatorcontrib><creatorcontrib>Mao, Fengxia</creatorcontrib><creatorcontrib>Zhang, Ju</creatorcontrib><creatorcontrib>Xu, Qianya</creatorcontrib><creatorcontrib>Han, Suge</creatorcontrib><creatorcontrib>Zhang, Qian</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in pediatrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Jingdi</au><au>Luo, Chenghan</au><au>Lei, Mengyuan</au><au>Shi, Zanyang</au><au>Cheng, Xinru</au><au>Wang, Lili</au><au>Shen, Min</au><au>Zhang, Yixia</au><au>Zhao, Min</au><au>Wang, Li</au><au>Zhang, Shanshan</au><au>Mao, Fengxia</au><au>Zhang, Ju</au><au>Xu, Qianya</au><au>Han, Suge</au><au>Zhang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants</atitle><jtitle>Frontiers in pediatrics</jtitle><stitle>FRONT PEDIATR</stitle><addtitle>Front Pediatr</addtitle><date>2021-03-19</date><risdate>2021</risdate><volume>9</volume><spage>648828</spage><epage>648828</epage><pages>648828-648828</pages><artnum>648828</artnum><issn>2296-2360</issn><eissn>2296-2360</eissn><abstract>Background: Bronchopulmonary dysplasia is a common pulmonary disease in newborns and is one of the main causes of death. The aim of this study was to build a new simple-to-use nomogram to screen high-risk populations.
Methods: In this single-center retrospective study performed from January 2017 to December 2020, we reviewed data on very-low-birth-weight infants whose gestational ages were below 32 weeks. LASSO regression was used to select variables for the risk model. Then, we used multivariable logistic regression to build the prediction model incorporating these selected features. Discrimination was assessed by the C-index, and and calibration of the model was assessed by and calibration curve and the Hosmer-Lemeshow test.
Results: The LASSO regression identified gestational age, duration of ventilation and serum NT-proBNP in the 1st week as significant predictors of BPD. The nomogram-illustrated model showed good discrimination and calibration. The C-index was 0.853 (95% CI: 0.851-0.854) in the training set and 0.855 (95% CI: 0.77-0.94) in the validation set. The calibration curve and Hosmer-Lemeshow test results showed good calibration between the predictions of the nomogram and the actual observations.
Conclusion: We demonstrated a simple-to-use nomogram for predicting BPD in the early stage. It may help clinicians recognize high-risk populations.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33816409</pmid><doi>10.3389/fped.2021.648828</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-2360 |
ispartof | Frontiers in pediatrics, 2021-03, Vol.9, p.648828-648828, Article 648828 |
issn | 2296-2360 2296-2360 |
language | eng |
recordid | cdi_crossref_primary_10_3389_fped_2021_648828 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; PubMed Central |
subjects | bronchopulmonary dysplasia LASSO regression Life Sciences & Biomedicine nomogram NT-proBNP level Pediatrics Science & Technology very-low-birth-weight infants |
title | Development and Validation of a Nomogram for Predicting Bronchopulmonary Dysplasia in Very-Low-Birth-Weight Infants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A47%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20a%20Nomogram%20for%20Predicting%20Bronchopulmonary%20Dysplasia%20in%20Very-Low-Birth-Weight%20Infants&rft.jtitle=Frontiers%20in%20pediatrics&rft.au=Zhang,%20Jingdi&rft.date=2021-03-19&rft.volume=9&rft.spage=648828&rft.epage=648828&rft.pages=648828-648828&rft.artnum=648828&rft.issn=2296-2360&rft.eissn=2296-2360&rft_id=info:doi/10.3389/fped.2021.648828&rft_dat=%3Cproquest_cross%3E2508890132%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2508890132&rft_id=info:pmid/33816409&rft_doaj_id=oai_doaj_org_article_b271b43aff7841a5888a2c77f0a4b7ed&rfr_iscdi=true |