Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)
Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine ac...
Gespeichert in:
Veröffentlicht in: | Frontiers in neurorobotics 2021-03, Vol.15, p.605751-605751, Article 605751 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 605751 |
---|---|
container_issue | |
container_start_page | 605751 |
container_title | Frontiers in neurorobotics |
container_volume | 15 |
creator | Asgher, Umer Khan, Muhammad Jawad Asif Nizami, Muhammad Hamza Khalil, Khurram Ahmad, Riaz Ayaz, Yasar Naseer, Noman |
description | Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks. |
doi_str_mv | 10.3389/fnbot.2021.605751 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3389_fnbot_2021_605751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4a0af82af3545cfb11dd56264578366</doaj_id><sourcerecordid>2508891117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</originalsourceid><addsrcrecordid>eNqNUk1vEzEUXCEQLYUfwAVZ4pIKJfhjvetwQEqjFiIlRSKterS83ufW7cYOtreQH8V_xGlK1XLiYj_ZM6P35k1RvCV4xJgYfzSu8WlEMSWjCvOak2fFPqkqOuSUiOeP6r3iVYzXGFe04uJlsZfZhGNR7he_Fz75gM6Css66S3Qet-cCXFIduvDhpvOqRYPFxfwQXdh0hZRDkxhtTPYW0NKbhI5_-XgDHSTv0HITE6w-oQk66Z1O1rsscwoqDGfOBBWgRcs16BR81H69QQNzOvu-PETL1LcbZHInR9tOhgulr6wDNHMJglEa0OBoMTt8Xbwwqovw5v4-KM5Pjs-mX4fzb19m08l8qMsxS8OSjJs6G1JyxRUBxcEQRhUmwtCK0Rob3BDMMHDQquGEQtVCdkSMy7ImFbCDYrbTbb26lutgVypspFdW3j34cClVSFZ3INtSYWUEVYbxkmvTENK2PBtd8lqwqspan3da675ZQauztUF1T0Sf_jh7JS_9rRSYUJHnOSgG9wLB_-ghJrmyUUPXKQe-j5LmTYoxIaTO0Pf_QK99H_IO7lA0T1oTllFkh9J5DTGAeWiGYLkNlrwLltwGS-6ClTnvHk_xwPibpAwQO8BPaLyJ2oLT8ADDOXuM84qJXGEytUltwzH1vUuZ-uH_qewPJpbqhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502512713</pqid></control><display><type>article</type><title>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Asgher, Umer ; Khan, Muhammad Jawad ; Asif Nizami, Muhammad Hamza ; Khalil, Khurram ; Ahmad, Riaz ; Ayaz, Yasar ; Naseer, Noman</creator><creatorcontrib>Asgher, Umer ; Khan, Muhammad Jawad ; Asif Nizami, Muhammad Hamza ; Khalil, Khurram ; Ahmad, Riaz ; Ayaz, Yasar ; Naseer, Noman</creatorcontrib><description>Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.</description><identifier>ISSN: 1662-5218</identifier><identifier>EISSN: 1662-5218</identifier><identifier>DOI: 10.3389/fnbot.2021.605751</identifier><identifier>PMID: 33815084</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Accuracy ; Autonomy ; brain computer interface (BCI) ; brain machine interface (BMI) ; Brain research ; Cognitive load ; Computer Science ; Computer Science, Artificial Intelligence ; Cortex (frontal) ; Design ; Electroencephalography ; Exoskeleton ; Feedback ; functional near infrared spectroscopy (fNIRS) ; Gait ; Grasping ; Hand ; Hemoglobin ; I.R. radiation ; Infrared spectroscopy ; Injuries ; Kinematics ; Learning algorithms ; Life Sciences & Biomedicine ; machine learning (ML) ; mental workload (MWL) ; Neuroergonomics ; Neuroscience ; Neurosciences ; Neurosciences & Neurology ; Patients ; Prosthetics ; Rehabilitation ; Robotics ; Science & Technology ; Signal processing ; Spectrum analysis ; Stroke ; Technology ; Workloads</subject><ispartof>Frontiers in neurorobotics, 2021-03, Vol.15, p.605751-605751, Article 605751</ispartof><rights>Copyright © 2021 Asgher, Khan, Asif Nizami, Khalil, Ahmad, Ayaz and Naseer.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Asgher, Khan, Asif Nizami, Khalil, Ahmad, Ayaz and Naseer. 2021 Asgher, Khan, Asif Nizami, Khalil, Ahmad, Ayaz and Naseer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000635563800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</citedby><cites>FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</cites><orcidid>0000-0002-2680-6403 ; 0000-0001-6535-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39262,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33815084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asgher, Umer</creatorcontrib><creatorcontrib>Khan, Muhammad Jawad</creatorcontrib><creatorcontrib>Asif Nizami, Muhammad Hamza</creatorcontrib><creatorcontrib>Khalil, Khurram</creatorcontrib><creatorcontrib>Ahmad, Riaz</creatorcontrib><creatorcontrib>Ayaz, Yasar</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><title>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</title><title>Frontiers in neurorobotics</title><addtitle>FRONT NEUROROBOTICS</addtitle><addtitle>Front Neurorobot</addtitle><description>Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.</description><subject>Accuracy</subject><subject>Autonomy</subject><subject>brain computer interface (BCI)</subject><subject>brain machine interface (BMI)</subject><subject>Brain research</subject><subject>Cognitive load</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Cortex (frontal)</subject><subject>Design</subject><subject>Electroencephalography</subject><subject>Exoskeleton</subject><subject>Feedback</subject><subject>functional near infrared spectroscopy (fNIRS)</subject><subject>Gait</subject><subject>Grasping</subject><subject>Hand</subject><subject>Hemoglobin</subject><subject>I.R. radiation</subject><subject>Infrared spectroscopy</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Learning algorithms</subject><subject>Life Sciences & Biomedicine</subject><subject>machine learning (ML)</subject><subject>mental workload (MWL)</subject><subject>Neuroergonomics</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Neurosciences & Neurology</subject><subject>Patients</subject><subject>Prosthetics</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Science & Technology</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Stroke</subject><subject>Technology</subject><subject>Workloads</subject><issn>1662-5218</issn><issn>1662-5218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUk1vEzEUXCEQLYUfwAVZ4pIKJfhjvetwQEqjFiIlRSKterS83ufW7cYOtreQH8V_xGlK1XLiYj_ZM6P35k1RvCV4xJgYfzSu8WlEMSWjCvOak2fFPqkqOuSUiOeP6r3iVYzXGFe04uJlsZfZhGNR7he_Fz75gM6Css66S3Qet-cCXFIduvDhpvOqRYPFxfwQXdh0hZRDkxhtTPYW0NKbhI5_-XgDHSTv0HITE6w-oQk66Z1O1rsscwoqDGfOBBWgRcs16BR81H69QQNzOvu-PETL1LcbZHInR9tOhgulr6wDNHMJglEa0OBoMTt8Xbwwqovw5v4-KM5Pjs-mX4fzb19m08l8qMsxS8OSjJs6G1JyxRUBxcEQRhUmwtCK0Rob3BDMMHDQquGEQtVCdkSMy7ImFbCDYrbTbb26lutgVypspFdW3j34cClVSFZ3INtSYWUEVYbxkmvTENK2PBtd8lqwqspan3da675ZQauztUF1T0Sf_jh7JS_9rRSYUJHnOSgG9wLB_-ghJrmyUUPXKQe-j5LmTYoxIaTO0Pf_QK99H_IO7lA0T1oTllFkh9J5DTGAeWiGYLkNlrwLltwGS-6ClTnvHk_xwPibpAwQO8BPaLyJ2oLT8ADDOXuM84qJXGEytUltwzH1vUuZ-uH_qewPJpbqhA</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Asgher, Umer</creator><creator>Khan, Muhammad Jawad</creator><creator>Asif Nizami, Muhammad Hamza</creator><creator>Khalil, Khurram</creator><creator>Ahmad, Riaz</creator><creator>Ayaz, Yasar</creator><creator>Naseer, Noman</creator><general>Frontiers Media Sa</general><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0001-6535-377X</orcidid></search><sort><creationdate>20210318</creationdate><title>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</title><author>Asgher, Umer ; Khan, Muhammad Jawad ; Asif Nizami, Muhammad Hamza ; Khalil, Khurram ; Ahmad, Riaz ; Ayaz, Yasar ; Naseer, Noman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Autonomy</topic><topic>brain computer interface (BCI)</topic><topic>brain machine interface (BMI)</topic><topic>Brain research</topic><topic>Cognitive load</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Cortex (frontal)</topic><topic>Design</topic><topic>Electroencephalography</topic><topic>Exoskeleton</topic><topic>Feedback</topic><topic>functional near infrared spectroscopy (fNIRS)</topic><topic>Gait</topic><topic>Grasping</topic><topic>Hand</topic><topic>Hemoglobin</topic><topic>I.R. radiation</topic><topic>Infrared spectroscopy</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Learning algorithms</topic><topic>Life Sciences & Biomedicine</topic><topic>machine learning (ML)</topic><topic>mental workload (MWL)</topic><topic>Neuroergonomics</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Neurosciences & Neurology</topic><topic>Patients</topic><topic>Prosthetics</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Science & Technology</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Stroke</topic><topic>Technology</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asgher, Umer</creatorcontrib><creatorcontrib>Khan, Muhammad Jawad</creatorcontrib><creatorcontrib>Asif Nizami, Muhammad Hamza</creatorcontrib><creatorcontrib>Khalil, Khurram</creatorcontrib><creatorcontrib>Ahmad, Riaz</creatorcontrib><creatorcontrib>Ayaz, Yasar</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI & AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neurorobotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asgher, Umer</au><au>Khan, Muhammad Jawad</au><au>Asif Nizami, Muhammad Hamza</au><au>Khalil, Khurram</au><au>Ahmad, Riaz</au><au>Ayaz, Yasar</au><au>Naseer, Noman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</atitle><jtitle>Frontiers in neurorobotics</jtitle><stitle>FRONT NEUROROBOTICS</stitle><addtitle>Front Neurorobot</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>15</volume><spage>605751</spage><epage>605751</epage><pages>605751-605751</pages><artnum>605751</artnum><issn>1662-5218</issn><eissn>1662-5218</eissn><abstract>Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33815084</pmid><doi>10.3389/fnbot.2021.605751</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0001-6535-377X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1662-5218 |
ispartof | Frontiers in neurorobotics, 2021-03, Vol.15, p.605751-605751, Article 605751 |
issn | 1662-5218 1662-5218 |
language | eng |
recordid | cdi_crossref_primary_10_3389_fnbot_2021_605751 |
source | DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | Accuracy Autonomy brain computer interface (BCI) brain machine interface (BMI) Brain research Cognitive load Computer Science Computer Science, Artificial Intelligence Cortex (frontal) Design Electroencephalography Exoskeleton Feedback functional near infrared spectroscopy (fNIRS) Gait Grasping Hand Hemoglobin I.R. radiation Infrared spectroscopy Injuries Kinematics Learning algorithms Life Sciences & Biomedicine machine learning (ML) mental workload (MWL) Neuroergonomics Neuroscience Neurosciences Neurosciences & Neurology Patients Prosthetics Rehabilitation Robotics Science & Technology Signal processing Spectrum analysis Stroke Technology Workloads |
title | Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor%20Training%20Using%20Mental%20Workload%20(MWL)%20With%20an%20Assistive%20Soft%20Exoskeleton%20System:%20A%20Functional%20Near-Infrared%20Spectroscopy%20(fNIRS)%20Study%20for%20Brain-Machine%20Interface%20(BMI)&rft.jtitle=Frontiers%20in%20neurorobotics&rft.au=Asgher,%20Umer&rft.date=2021-03-18&rft.volume=15&rft.spage=605751&rft.epage=605751&rft.pages=605751-605751&rft.artnum=605751&rft.issn=1662-5218&rft.eissn=1662-5218&rft_id=info:doi/10.3389/fnbot.2021.605751&rft_dat=%3Cproquest_cross%3E2508891117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502512713&rft_id=info:pmid/33815084&rft_doaj_id=oai_doaj_org_article_d4a0af82af3545cfb11dd56264578366&rfr_iscdi=true |