Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)

Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in neurorobotics 2021-03, Vol.15, p.605751-605751, Article 605751
Hauptverfasser: Asgher, Umer, Khan, Muhammad Jawad, Asif Nizami, Muhammad Hamza, Khalil, Khurram, Ahmad, Riaz, Ayaz, Yasar, Naseer, Noman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 605751
container_issue
container_start_page 605751
container_title Frontiers in neurorobotics
container_volume 15
creator Asgher, Umer
Khan, Muhammad Jawad
Asif Nizami, Muhammad Hamza
Khalil, Khurram
Ahmad, Riaz
Ayaz, Yasar
Naseer, Noman
description Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.
doi_str_mv 10.3389/fnbot.2021.605751
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3389_fnbot_2021_605751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d4a0af82af3545cfb11dd56264578366</doaj_id><sourcerecordid>2508891117</sourcerecordid><originalsourceid>FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</originalsourceid><addsrcrecordid>eNqNUk1vEzEUXCEQLYUfwAVZ4pIKJfhjvetwQEqjFiIlRSKterS83ufW7cYOtreQH8V_xGlK1XLiYj_ZM6P35k1RvCV4xJgYfzSu8WlEMSWjCvOak2fFPqkqOuSUiOeP6r3iVYzXGFe04uJlsZfZhGNR7he_Fz75gM6Css66S3Qet-cCXFIduvDhpvOqRYPFxfwQXdh0hZRDkxhtTPYW0NKbhI5_-XgDHSTv0HITE6w-oQk66Z1O1rsscwoqDGfOBBWgRcs16BR81H69QQNzOvu-PETL1LcbZHInR9tOhgulr6wDNHMJglEa0OBoMTt8Xbwwqovw5v4-KM5Pjs-mX4fzb19m08l8qMsxS8OSjJs6G1JyxRUBxcEQRhUmwtCK0Rob3BDMMHDQquGEQtVCdkSMy7ImFbCDYrbTbb26lutgVypspFdW3j34cClVSFZ3INtSYWUEVYbxkmvTENK2PBtd8lqwqspan3da675ZQauztUF1T0Sf_jh7JS_9rRSYUJHnOSgG9wLB_-ghJrmyUUPXKQe-j5LmTYoxIaTO0Pf_QK99H_IO7lA0T1oTllFkh9J5DTGAeWiGYLkNlrwLltwGS-6ClTnvHk_xwPibpAwQO8BPaLyJ2oLT8ADDOXuM84qJXGEytUltwzH1vUuZ-uH_qewPJpbqhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2502512713</pqid></control><display><type>article</type><title>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</title><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Web of Science - Social Sciences Citation Index – 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><creator>Asgher, Umer ; Khan, Muhammad Jawad ; Asif Nizami, Muhammad Hamza ; Khalil, Khurram ; Ahmad, Riaz ; Ayaz, Yasar ; Naseer, Noman</creator><creatorcontrib>Asgher, Umer ; Khan, Muhammad Jawad ; Asif Nizami, Muhammad Hamza ; Khalil, Khurram ; Ahmad, Riaz ; Ayaz, Yasar ; Naseer, Noman</creatorcontrib><description>Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.</description><identifier>ISSN: 1662-5218</identifier><identifier>EISSN: 1662-5218</identifier><identifier>DOI: 10.3389/fnbot.2021.605751</identifier><identifier>PMID: 33815084</identifier><language>eng</language><publisher>LAUSANNE: Frontiers Media Sa</publisher><subject>Accuracy ; Autonomy ; brain computer interface (BCI) ; brain machine interface (BMI) ; Brain research ; Cognitive load ; Computer Science ; Computer Science, Artificial Intelligence ; Cortex (frontal) ; Design ; Electroencephalography ; Exoskeleton ; Feedback ; functional near infrared spectroscopy (fNIRS) ; Gait ; Grasping ; Hand ; Hemoglobin ; I.R. radiation ; Infrared spectroscopy ; Injuries ; Kinematics ; Learning algorithms ; Life Sciences &amp; Biomedicine ; machine learning (ML) ; mental workload (MWL) ; Neuroergonomics ; Neuroscience ; Neurosciences ; Neurosciences &amp; Neurology ; Patients ; Prosthetics ; Rehabilitation ; Robotics ; Science &amp; Technology ; Signal processing ; Spectrum analysis ; Stroke ; Technology ; Workloads</subject><ispartof>Frontiers in neurorobotics, 2021-03, Vol.15, p.605751-605751, Article 605751</ispartof><rights>Copyright © 2021 Asgher, Khan, Asif Nizami, Khalil, Ahmad, Ayaz and Naseer.</rights><rights>2021. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Copyright © 2021 Asgher, Khan, Asif Nizami, Khalil, Ahmad, Ayaz and Naseer. 2021 Asgher, Khan, Asif Nizami, Khalil, Ahmad, Ayaz and Naseer</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>14</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000635563800001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</citedby><cites>FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</cites><orcidid>0000-0002-2680-6403 ; 0000-0001-6535-377X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012849/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC8012849/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2115,27929,27930,39262,39263,53796,53798</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33815084$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Asgher, Umer</creatorcontrib><creatorcontrib>Khan, Muhammad Jawad</creatorcontrib><creatorcontrib>Asif Nizami, Muhammad Hamza</creatorcontrib><creatorcontrib>Khalil, Khurram</creatorcontrib><creatorcontrib>Ahmad, Riaz</creatorcontrib><creatorcontrib>Ayaz, Yasar</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><title>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</title><title>Frontiers in neurorobotics</title><addtitle>FRONT NEUROROBOTICS</addtitle><addtitle>Front Neurorobot</addtitle><description>Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.</description><subject>Accuracy</subject><subject>Autonomy</subject><subject>brain computer interface (BCI)</subject><subject>brain machine interface (BMI)</subject><subject>Brain research</subject><subject>Cognitive load</subject><subject>Computer Science</subject><subject>Computer Science, Artificial Intelligence</subject><subject>Cortex (frontal)</subject><subject>Design</subject><subject>Electroencephalography</subject><subject>Exoskeleton</subject><subject>Feedback</subject><subject>functional near infrared spectroscopy (fNIRS)</subject><subject>Gait</subject><subject>Grasping</subject><subject>Hand</subject><subject>Hemoglobin</subject><subject>I.R. radiation</subject><subject>Infrared spectroscopy</subject><subject>Injuries</subject><subject>Kinematics</subject><subject>Learning algorithms</subject><subject>Life Sciences &amp; Biomedicine</subject><subject>machine learning (ML)</subject><subject>mental workload (MWL)</subject><subject>Neuroergonomics</subject><subject>Neuroscience</subject><subject>Neurosciences</subject><subject>Neurosciences &amp; Neurology</subject><subject>Patients</subject><subject>Prosthetics</subject><subject>Rehabilitation</subject><subject>Robotics</subject><subject>Science &amp; Technology</subject><subject>Signal processing</subject><subject>Spectrum analysis</subject><subject>Stroke</subject><subject>Technology</subject><subject>Workloads</subject><issn>1662-5218</issn><issn>1662-5218</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>GIZIO</sourceid><sourceid>HGBXW</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNUk1vEzEUXCEQLYUfwAVZ4pIKJfhjvetwQEqjFiIlRSKterS83ufW7cYOtreQH8V_xGlK1XLiYj_ZM6P35k1RvCV4xJgYfzSu8WlEMSWjCvOak2fFPqkqOuSUiOeP6r3iVYzXGFe04uJlsZfZhGNR7he_Fz75gM6Css66S3Qet-cCXFIduvDhpvOqRYPFxfwQXdh0hZRDkxhtTPYW0NKbhI5_-XgDHSTv0HITE6w-oQk66Z1O1rsscwoqDGfOBBWgRcs16BR81H69QQNzOvu-PETL1LcbZHInR9tOhgulr6wDNHMJglEa0OBoMTt8Xbwwqovw5v4-KM5Pjs-mX4fzb19m08l8qMsxS8OSjJs6G1JyxRUBxcEQRhUmwtCK0Rob3BDMMHDQquGEQtVCdkSMy7ImFbCDYrbTbb26lutgVypspFdW3j34cClVSFZ3INtSYWUEVYbxkmvTENK2PBtd8lqwqspan3da675ZQauztUF1T0Sf_jh7JS_9rRSYUJHnOSgG9wLB_-ghJrmyUUPXKQe-j5LmTYoxIaTO0Pf_QK99H_IO7lA0T1oTllFkh9J5DTGAeWiGYLkNlrwLltwGS-6ClTnvHk_xwPibpAwQO8BPaLyJ2oLT8ADDOXuM84qJXGEytUltwzH1vUuZ-uH_qewPJpbqhA</recordid><startdate>20210318</startdate><enddate>20210318</enddate><creator>Asgher, Umer</creator><creator>Khan, Muhammad Jawad</creator><creator>Asif Nizami, Muhammad Hamza</creator><creator>Khalil, Khurram</creator><creator>Ahmad, Riaz</creator><creator>Ayaz, Yasar</creator><creator>Naseer, Noman</creator><general>Frontiers Media Sa</general><general>Frontiers Research Foundation</general><general>Frontiers Media S.A</general><scope>17B</scope><scope>BLEPL</scope><scope>DTL</scope><scope>DVR</scope><scope>EGQ</scope><scope>GIZIO</scope><scope>HGBXW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0001-6535-377X</orcidid></search><sort><creationdate>20210318</creationdate><title>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</title><author>Asgher, Umer ; Khan, Muhammad Jawad ; Asif Nizami, Muhammad Hamza ; Khalil, Khurram ; Ahmad, Riaz ; Ayaz, Yasar ; Naseer, Noman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c493t-419b705745a5a1ea5ef132a018f263270f0b1030e5ecab512e6de8158944716e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accuracy</topic><topic>Autonomy</topic><topic>brain computer interface (BCI)</topic><topic>brain machine interface (BMI)</topic><topic>Brain research</topic><topic>Cognitive load</topic><topic>Computer Science</topic><topic>Computer Science, Artificial Intelligence</topic><topic>Cortex (frontal)</topic><topic>Design</topic><topic>Electroencephalography</topic><topic>Exoskeleton</topic><topic>Feedback</topic><topic>functional near infrared spectroscopy (fNIRS)</topic><topic>Gait</topic><topic>Grasping</topic><topic>Hand</topic><topic>Hemoglobin</topic><topic>I.R. radiation</topic><topic>Infrared spectroscopy</topic><topic>Injuries</topic><topic>Kinematics</topic><topic>Learning algorithms</topic><topic>Life Sciences &amp; Biomedicine</topic><topic>machine learning (ML)</topic><topic>mental workload (MWL)</topic><topic>Neuroergonomics</topic><topic>Neuroscience</topic><topic>Neurosciences</topic><topic>Neurosciences &amp; Neurology</topic><topic>Patients</topic><topic>Prosthetics</topic><topic>Rehabilitation</topic><topic>Robotics</topic><topic>Science &amp; Technology</topic><topic>Signal processing</topic><topic>Spectrum analysis</topic><topic>Stroke</topic><topic>Technology</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Asgher, Umer</creatorcontrib><creatorcontrib>Khan, Muhammad Jawad</creatorcontrib><creatorcontrib>Asif Nizami, Muhammad Hamza</creatorcontrib><creatorcontrib>Khalil, Khurram</creatorcontrib><creatorcontrib>Ahmad, Riaz</creatorcontrib><creatorcontrib>Ayaz, Yasar</creatorcontrib><creatorcontrib>Naseer, Noman</creatorcontrib><collection>Web of Knowledge</collection><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Social Sciences Citation Index</collection><collection>Web of Science Primary (SCIE, SSCI &amp; AHCI)</collection><collection>Web of Science - Social Sciences Citation Index – 2021</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in neurorobotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Asgher, Umer</au><au>Khan, Muhammad Jawad</au><au>Asif Nizami, Muhammad Hamza</au><au>Khalil, Khurram</au><au>Ahmad, Riaz</au><au>Ayaz, Yasar</au><au>Naseer, Noman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)</atitle><jtitle>Frontiers in neurorobotics</jtitle><stitle>FRONT NEUROROBOTICS</stitle><addtitle>Front Neurorobot</addtitle><date>2021-03-18</date><risdate>2021</risdate><volume>15</volume><spage>605751</spage><epage>605751</epage><pages>605751-605751</pages><artnum>605751</artnum><issn>1662-5218</issn><eissn>1662-5218</eissn><abstract>Mental workload is a neuroergonomic human factor, which is widely used in planning a system's safety and areas like brain-machine interface (BMI), neurofeedback, and assistive technologies. Robotic prosthetics methodologies are employed for assisting hemiplegic patients in performing routine activities. Assistive technologies' design and operation are required to have an easy interface with the brain with fewer protocols, in an attempt to optimize mobility and autonomy. The possible answer to these design questions may lie in neuroergonomics coupled with BMI systems. In this study, two human factors are addressed: designing a lightweight wearable robotic exoskeleton hand that is used to assist the potential stroke patients with an integrated portable brain interface using mental workload (MWL) signals acquired with portable functional near-infrared spectroscopy (fNIRS) system. The system may generate command signals for operating a wearable robotic exoskeleton hand using two-state MWL signals. The fNIRS system is used to record optical signals in the form of change in concentration of oxy and deoxygenated hemoglobin (HbO and HbR) from the pre-frontal cortex (PFC) region of the brain. Fifteen participants participated in this study and were given hand-grasping tasks. Two-state MWL signals acquired from the PFC region of the participant's brain are segregated using machine learning classifier-support vector machines (SVM) to utilize in operating a robotic exoskeleton hand. The maximum classification accuracy is 91.31%, using a combination of mean-slope features with an average information transfer rate (ITR) of 1.43. These results show the feasibility of a two-state MWL (fNIRS-based) robotic exoskeleton hand (BMI system) for hemiplegic patients assisting in the physical grasping tasks.</abstract><cop>LAUSANNE</cop><pub>Frontiers Media Sa</pub><pmid>33815084</pmid><doi>10.3389/fnbot.2021.605751</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-2680-6403</orcidid><orcidid>https://orcid.org/0000-0001-6535-377X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1662-5218
ispartof Frontiers in neurorobotics, 2021-03, Vol.15, p.605751-605751, Article 605751
issn 1662-5218
1662-5218
language eng
recordid cdi_crossref_primary_10_3389_fnbot_2021_605751
source DOAJ Directory of Open Access Journals; PubMed Central Open Access; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; EZB-FREE-00999 freely available EZB journals; PubMed Central; Web of Science - Social Sciences Citation Index – 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />
subjects Accuracy
Autonomy
brain computer interface (BCI)
brain machine interface (BMI)
Brain research
Cognitive load
Computer Science
Computer Science, Artificial Intelligence
Cortex (frontal)
Design
Electroencephalography
Exoskeleton
Feedback
functional near infrared spectroscopy (fNIRS)
Gait
Grasping
Hand
Hemoglobin
I.R. radiation
Infrared spectroscopy
Injuries
Kinematics
Learning algorithms
Life Sciences & Biomedicine
machine learning (ML)
mental workload (MWL)
Neuroergonomics
Neuroscience
Neurosciences
Neurosciences & Neurology
Patients
Prosthetics
Rehabilitation
Robotics
Science & Technology
Signal processing
Spectrum analysis
Stroke
Technology
Workloads
title Motor Training Using Mental Workload (MWL) With an Assistive Soft Exoskeleton System: A Functional Near-Infrared Spectroscopy (fNIRS) Study for Brain-Machine Interface (BMI)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T03%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motor%20Training%20Using%20Mental%20Workload%20(MWL)%20With%20an%20Assistive%20Soft%20Exoskeleton%20System:%20A%20Functional%20Near-Infrared%20Spectroscopy%20(fNIRS)%20Study%20for%20Brain-Machine%20Interface%20(BMI)&rft.jtitle=Frontiers%20in%20neurorobotics&rft.au=Asgher,%20Umer&rft.date=2021-03-18&rft.volume=15&rft.spage=605751&rft.epage=605751&rft.pages=605751-605751&rft.artnum=605751&rft.issn=1662-5218&rft.eissn=1662-5218&rft_id=info:doi/10.3389/fnbot.2021.605751&rft_dat=%3Cproquest_cross%3E2508891117%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2502512713&rft_id=info:pmid/33815084&rft_doaj_id=oai_doaj_org_article_d4a0af82af3545cfb11dd56264578366&rfr_iscdi=true