Optimizing Shipbuilding Production Project Scheduling Under Resource Constraints Using Genetic Algorithms and Fuzzy Sets

This study explores the application of Genetic Algorithms (GA) in optimizing shipbuilding production processes in the presence of uncertain environments. The research addresses two key aspects: firstly, the integration of GA RCPSP (Resource-Constrained Project Scheduling Problem) with techniques for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Marine science and technology bulletin 2023-09, Vol.12 (3), p.380-401
Hauptverfasser: AKAN, Ercan, ALKAN, Güler
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 3
container_start_page 380
container_title Marine science and technology bulletin
container_volume 12
creator AKAN, Ercan
ALKAN, Güler
description This study explores the application of Genetic Algorithms (GA) in optimizing shipbuilding production processes in the presence of uncertain environments. The research addresses two key aspects: firstly, the integration of GA RCPSP (Resource-Constrained Project Scheduling Problem) with techniques for managing uncertainty in shipbuilding production; and secondly, the analysis of Pareto optimal solutions generated by GA to achieve optimal scheduling in the shipbuilding context. The proposed framework aims to minimize project completion time and maximize resource utilization by incorporating probabilistic models, scenario analysis to handle uncertainties. Furthermore, the study focuses on evaluating the trade-offs between project completion time, resource allocation, and cost through the analysis of Pareto optimal solutions, using visualization techniques and sensitivity analyses to support decision-making processes. The findings contribute to enhancing shipbuilding production by providing a comprehensive approach for effectively managing uncertainty, improving resource allocation, and reducing project duration through the integration of GA RCPSP and uncertainty management techniques.
doi_str_mv 10.33714/masteb.1324266
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33714_masteb_1324266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33714_masteb_1324266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c816-f587edbbcb931ec5944c084f5156a75b252dc1e8521d3a13a14da601e6638683</originalsourceid><addsrcrecordid>eNpNkE1rAjEQhkNpoWI995o_sLr53HgUqbYgWLr1vGSTWY3shyRZqP76dtVDYWCel3eYw4PQK0mnjGWEzxodIpRTwiinUj6gESU8S-ZSysd__IwmIRzTNKUqk5zREfrZnqJr3MW1e5wf3KnsXW2H8Ok725vounbAI5iIc3MA29dDu2stePwFoeu9Abzs2hC9dm0MeBeGgzW0EJ3Bi3rfeRcPTcC6tXjVXy5nnEMML-ip0nWAyX2PUb56-16-J5vt-mO52CRGEZlUQmVgy9KUc0bAiDnnJlW8EkRInYmSCmoNASUosUyTv-FWy5SAlExJxcZodvtqfBeCh6o4eddofy5IWlzNFTdzxd0c-wU5ymUu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimizing Shipbuilding Production Project Scheduling Under Resource Constraints Using Genetic Algorithms and Fuzzy Sets</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>AKAN, Ercan ; ALKAN, Güler</creator><creatorcontrib>AKAN, Ercan ; ALKAN, Güler</creatorcontrib><description>This study explores the application of Genetic Algorithms (GA) in optimizing shipbuilding production processes in the presence of uncertain environments. The research addresses two key aspects: firstly, the integration of GA RCPSP (Resource-Constrained Project Scheduling Problem) with techniques for managing uncertainty in shipbuilding production; and secondly, the analysis of Pareto optimal solutions generated by GA to achieve optimal scheduling in the shipbuilding context. The proposed framework aims to minimize project completion time and maximize resource utilization by incorporating probabilistic models, scenario analysis to handle uncertainties. Furthermore, the study focuses on evaluating the trade-offs between project completion time, resource allocation, and cost through the analysis of Pareto optimal solutions, using visualization techniques and sensitivity analyses to support decision-making processes. The findings contribute to enhancing shipbuilding production by providing a comprehensive approach for effectively managing uncertainty, improving resource allocation, and reducing project duration through the integration of GA RCPSP and uncertainty management techniques.</description><identifier>ISSN: 2147-9666</identifier><identifier>EISSN: 2147-9666</identifier><identifier>DOI: 10.33714/masteb.1324266</identifier><language>eng</language><ispartof>Marine science and technology bulletin, 2023-09, Vol.12 (3), p.380-401</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c816-f587edbbcb931ec5944c084f5156a75b252dc1e8521d3a13a14da601e6638683</cites><orcidid>0000-0003-0383-8290 ; 0000-0001-5052-111X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>AKAN, Ercan</creatorcontrib><creatorcontrib>ALKAN, Güler</creatorcontrib><title>Optimizing Shipbuilding Production Project Scheduling Under Resource Constraints Using Genetic Algorithms and Fuzzy Sets</title><title>Marine science and technology bulletin</title><description>This study explores the application of Genetic Algorithms (GA) in optimizing shipbuilding production processes in the presence of uncertain environments. The research addresses two key aspects: firstly, the integration of GA RCPSP (Resource-Constrained Project Scheduling Problem) with techniques for managing uncertainty in shipbuilding production; and secondly, the analysis of Pareto optimal solutions generated by GA to achieve optimal scheduling in the shipbuilding context. The proposed framework aims to minimize project completion time and maximize resource utilization by incorporating probabilistic models, scenario analysis to handle uncertainties. Furthermore, the study focuses on evaluating the trade-offs between project completion time, resource allocation, and cost through the analysis of Pareto optimal solutions, using visualization techniques and sensitivity analyses to support decision-making processes. The findings contribute to enhancing shipbuilding production by providing a comprehensive approach for effectively managing uncertainty, improving resource allocation, and reducing project duration through the integration of GA RCPSP and uncertainty management techniques.</description><issn>2147-9666</issn><issn>2147-9666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1rAjEQhkNpoWI995o_sLr53HgUqbYgWLr1vGSTWY3shyRZqP76dtVDYWCel3eYw4PQK0mnjGWEzxodIpRTwiinUj6gESU8S-ZSysd__IwmIRzTNKUqk5zREfrZnqJr3MW1e5wf3KnsXW2H8Ok725vounbAI5iIc3MA29dDu2stePwFoeu9Abzs2hC9dm0MeBeGgzW0EJ3Bi3rfeRcPTcC6tXjVXy5nnEMML-ip0nWAyX2PUb56-16-J5vt-mO52CRGEZlUQmVgy9KUc0bAiDnnJlW8EkRInYmSCmoNASUosUyTv-FWy5SAlExJxcZodvtqfBeCh6o4eddofy5IWlzNFTdzxd0c-wU5ymUu</recordid><startdate>20230928</startdate><enddate>20230928</enddate><creator>AKAN, Ercan</creator><creator>ALKAN, Güler</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0383-8290</orcidid><orcidid>https://orcid.org/0000-0001-5052-111X</orcidid></search><sort><creationdate>20230928</creationdate><title>Optimizing Shipbuilding Production Project Scheduling Under Resource Constraints Using Genetic Algorithms and Fuzzy Sets</title><author>AKAN, Ercan ; ALKAN, Güler</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c816-f587edbbcb931ec5944c084f5156a75b252dc1e8521d3a13a14da601e6638683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AKAN, Ercan</creatorcontrib><creatorcontrib>ALKAN, Güler</creatorcontrib><collection>CrossRef</collection><jtitle>Marine science and technology bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AKAN, Ercan</au><au>ALKAN, Güler</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Shipbuilding Production Project Scheduling Under Resource Constraints Using Genetic Algorithms and Fuzzy Sets</atitle><jtitle>Marine science and technology bulletin</jtitle><date>2023-09-28</date><risdate>2023</risdate><volume>12</volume><issue>3</issue><spage>380</spage><epage>401</epage><pages>380-401</pages><issn>2147-9666</issn><eissn>2147-9666</eissn><abstract>This study explores the application of Genetic Algorithms (GA) in optimizing shipbuilding production processes in the presence of uncertain environments. The research addresses two key aspects: firstly, the integration of GA RCPSP (Resource-Constrained Project Scheduling Problem) with techniques for managing uncertainty in shipbuilding production; and secondly, the analysis of Pareto optimal solutions generated by GA to achieve optimal scheduling in the shipbuilding context. The proposed framework aims to minimize project completion time and maximize resource utilization by incorporating probabilistic models, scenario analysis to handle uncertainties. Furthermore, the study focuses on evaluating the trade-offs between project completion time, resource allocation, and cost through the analysis of Pareto optimal solutions, using visualization techniques and sensitivity analyses to support decision-making processes. The findings contribute to enhancing shipbuilding production by providing a comprehensive approach for effectively managing uncertainty, improving resource allocation, and reducing project duration through the integration of GA RCPSP and uncertainty management techniques.</abstract><doi>10.33714/masteb.1324266</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0003-0383-8290</orcidid><orcidid>https://orcid.org/0000-0001-5052-111X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2147-9666
ispartof Marine science and technology bulletin, 2023-09, Vol.12 (3), p.380-401
issn 2147-9666
2147-9666
language eng
recordid cdi_crossref_primary_10_33714_masteb_1324266
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Optimizing Shipbuilding Production Project Scheduling Under Resource Constraints Using Genetic Algorithms and Fuzzy Sets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A38%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Shipbuilding%20Production%20Project%20Scheduling%20Under%20Resource%20Constraints%20Using%20Genetic%20Algorithms%20and%20Fuzzy%20Sets&rft.jtitle=Marine%20science%20and%20technology%20bulletin&rft.au=AKAN,%20Ercan&rft.date=2023-09-28&rft.volume=12&rft.issue=3&rft.spage=380&rft.epage=401&rft.pages=380-401&rft.issn=2147-9666&rft.eissn=2147-9666&rft_id=info:doi/10.33714/masteb.1324266&rft_dat=%3Ccrossref%3E10_33714_masteb_1324266%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true