DATA MINING USING RANDOM FOREST, NAÏVE BAYES, AND ADABOOST MODELS FOR PREDICTION AND CLASSIFICATION OF BENIGN AND MALIGNANT BREAST CANCER
This study predicts and classifies benign and malignant breast cancer using 3 classification models. The method used in this research is Random Forest, Naïve Bayes and AdaBoost. The prediction results get Random Forest = 100%, Naïve Bayes = 80% and AdaBoost = 80%. Results using Test and Score with N...
Gespeichert in:
Veröffentlicht in: | Pilar Nusa Mandiri 2022-03, Vol.18 (1), p.37-46 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study predicts and classifies benign and malignant breast cancer using 3 classification models. The method used in this research is Random Forest, Naïve Bayes and AdaBoost. The prediction results get Random Forest = 100%, Naïve Bayes = 80% and AdaBoost = 80%. Results using Test and Score with Number of Folds 2, 5 and 10. Number of Folds 2 Random Forest model Accuracy = 95%, Precision = 95% and Recall = 95%, Naïve Bayes Accuracy = 93%, Precision = 93% and Recall 93%, AdaBoost Accuracy = 90%, Precision = 90% and Recall = 90%. With Number of Folds 5 with Random Forest = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 93%, Precision = 93% and Recall = 93%. With Number of Folds 10 Random Forest model = 96%, Precision = 96% and Recall 96%. Naïve Bayes Accuracy value = 94%, Precision = 94% and Recall = 94%, AdaBoost Accuracy value = 92%, Precision = 92% and Recall = 92%. Of the 3 models used, Random Forest got the best classification results compared to the others. |
---|---|
ISSN: | 1978-1946 2527-6514 |
DOI: | 10.33480/pilar.v18i1.2912 |