Conservation Laws for a Model with both Cubic and Quadratic Nonlinearity

In this paper, the conservation laws for a model with both quadratic and cubic nonlinearity \begin{eqnarray*}m_{t}=bu_{x}+\frac{1}{2}a\left[ \left( u^{2}-u_{x}^{2}\right) m\right] _{x}+%\frac{1}{2}c\left( 2m\cdot u_{x}+m_{x}\cdot u\right) ;\text{ \ \ }m=u-u_{xx}\end{eqnarray*}%are considered for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fundamental journal of mathematics and applications 2019-12, Vol.2 (2), p.180-185
Hauptverfasser: TAŞKESEN, Hatice, ALALOUSH, Mohanad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, the conservation laws for a model with both quadratic and cubic nonlinearity \begin{eqnarray*}m_{t}=bu_{x}+\frac{1}{2}a\left[ \left( u^{2}-u_{x}^{2}\right) m\right] _{x}+%\frac{1}{2}c\left( 2m\cdot u_{x}+m_{x}\cdot u\right) ;\text{ \ \ }m=u-u_{xx}\end{eqnarray*}%are considered for the six cases of coefficients. By using a variational derivative approach, conservation laws were constructed. The computations to derive  multipliers and conservation law fluxes are conducted by using a Maple-based package which is called GeM.
ISSN:2645-8845
2645-8845
DOI:10.33401/fujma.587740