Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease

Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:sinkron 2024-11, Vol.8 (4), p.2568-2574
Hauptverfasser: Perangin Angin, Johanes Terang Kita, Herman, Herman, Joni, Joni
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2574
container_issue 4
container_start_page 2568
container_title sinkron
container_volume 8
creator Perangin Angin, Johanes Terang Kita
Herman, Herman
Joni, Joni
description Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.
doi_str_mv 10.33395/sinkron.v8i4.14145
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33395_sinkron_v8i4_14145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33395_sinkron_v8i4_14145</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_33395_sinkron_v8i4_141453</originalsourceid><addsrcrecordid>eNqdj7FqwzAURUVoIaHNF2TR2A5xJUsK9ezUBLJk6BCyCNV9SkRkybxnCv37xsFf0OleuBwuh7GVFIVSqjJvFNIVcyp-3oMupJbazNiiNFquSyGrh6kLrY9ztiQKX8LIjTC63CzYqc5dH2EAvgdMEHkT6ALIt4FaDF1ILg38pd4321fu0jevc8zj6j0gpBb4LtCQz-g67m_DwcVuZMERPLNH7yLBcsonppqPz3q3bjETIXjb3x4c_lop7N3ETiZ2NLF3E_U_6g-OyFZJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</title><source>Alma/SFX Local Collection</source><creator>Perangin Angin, Johanes Terang Kita ; Herman, Herman ; Joni, Joni</creator><creatorcontrib>Perangin Angin, Johanes Terang Kita ; Herman, Herman ; Joni, Joni</creatorcontrib><description>Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.</description><identifier>ISSN: 2541-044X</identifier><identifier>EISSN: 2541-2019</identifier><identifier>DOI: 10.33395/sinkron.v8i4.14145</identifier><language>eng</language><ispartof>sinkron, 2024-11, Vol.8 (4), p.2568-2574</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Perangin Angin, Johanes Terang Kita</creatorcontrib><creatorcontrib>Herman, Herman</creatorcontrib><creatorcontrib>Joni, Joni</creatorcontrib><title>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</title><title>sinkron</title><description>Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.</description><issn>2541-044X</issn><issn>2541-2019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdj7FqwzAURUVoIaHNF2TR2A5xJUsK9ezUBLJk6BCyCNV9SkRkybxnCv37xsFf0OleuBwuh7GVFIVSqjJvFNIVcyp-3oMupJbazNiiNFquSyGrh6kLrY9ztiQKX8LIjTC63CzYqc5dH2EAvgdMEHkT6ALIt4FaDF1ILg38pd4321fu0jevc8zj6j0gpBb4LtCQz-g67m_DwcVuZMERPLNH7yLBcsonppqPz3q3bjETIXjb3x4c_lop7N3ETiZ2NLF3E_U_6g-OyFZJ</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Perangin Angin, Johanes Terang Kita</creator><creator>Herman, Herman</creator><creator>Joni, Joni</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241102</creationdate><title>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</title><author>Perangin Angin, Johanes Terang Kita ; Herman, Herman ; Joni, Joni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_33395_sinkron_v8i4_141453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Perangin Angin, Johanes Terang Kita</creatorcontrib><creatorcontrib>Herman, Herman</creatorcontrib><creatorcontrib>Joni, Joni</creatorcontrib><collection>CrossRef</collection><jtitle>sinkron</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perangin Angin, Johanes Terang Kita</au><au>Herman, Herman</au><au>Joni, Joni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</atitle><jtitle>sinkron</jtitle><date>2024-11-02</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>2568</spage><epage>2574</epage><pages>2568-2574</pages><issn>2541-044X</issn><eissn>2541-2019</eissn><abstract>Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.</abstract><doi>10.33395/sinkron.v8i4.14145</doi></addata></record>
fulltext fulltext
identifier ISSN: 2541-044X
ispartof sinkron, 2024-11, Vol.8 (4), p.2568-2574
issn 2541-044X
2541-2019
language eng
recordid cdi_crossref_primary_10_33395_sinkron_v8i4_14145
source Alma/SFX Local Collection
title Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Kernel%20Fisher%20Discriminant%20(CKFD)%20and%20Color%20Difference%20Histogram%20for%20Palm%20Disease&rft.jtitle=sinkron&rft.au=Perangin%20Angin,%20Johanes%20Terang%20Kita&rft.date=2024-11-02&rft.volume=8&rft.issue=4&rft.spage=2568&rft.epage=2574&rft.pages=2568-2574&rft.issn=2541-044X&rft.eissn=2541-2019&rft_id=info:doi/10.33395/sinkron.v8i4.14145&rft_dat=%3Ccrossref%3E10_33395_sinkron_v8i4_14145%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true