Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease
Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This stu...
Gespeichert in:
Veröffentlicht in: | sinkron 2024-11, Vol.8 (4), p.2568-2574 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2574 |
---|---|
container_issue | 4 |
container_start_page | 2568 |
container_title | sinkron |
container_volume | 8 |
creator | Perangin Angin, Johanes Terang Kita Herman, Herman Joni, Joni |
description | Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry. |
doi_str_mv | 10.33395/sinkron.v8i4.14145 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33395_sinkron_v8i4_14145</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33395_sinkron_v8i4_14145</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_33395_sinkron_v8i4_141453</originalsourceid><addsrcrecordid>eNqdj7FqwzAURUVoIaHNF2TR2A5xJUsK9ezUBLJk6BCyCNV9SkRkybxnCv37xsFf0OleuBwuh7GVFIVSqjJvFNIVcyp-3oMupJbazNiiNFquSyGrh6kLrY9ztiQKX8LIjTC63CzYqc5dH2EAvgdMEHkT6ALIt4FaDF1ILg38pd4321fu0jevc8zj6j0gpBb4LtCQz-g67m_DwcVuZMERPLNH7yLBcsonppqPz3q3bjETIXjb3x4c_lop7N3ETiZ2NLF3E_U_6g-OyFZJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</title><source>Alma/SFX Local Collection</source><creator>Perangin Angin, Johanes Terang Kita ; Herman, Herman ; Joni, Joni</creator><creatorcontrib>Perangin Angin, Johanes Terang Kita ; Herman, Herman ; Joni, Joni</creatorcontrib><description>Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.</description><identifier>ISSN: 2541-044X</identifier><identifier>EISSN: 2541-2019</identifier><identifier>DOI: 10.33395/sinkron.v8i4.14145</identifier><language>eng</language><ispartof>sinkron, 2024-11, Vol.8 (4), p.2568-2574</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Perangin Angin, Johanes Terang Kita</creatorcontrib><creatorcontrib>Herman, Herman</creatorcontrib><creatorcontrib>Joni, Joni</creatorcontrib><title>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</title><title>sinkron</title><description>Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.</description><issn>2541-044X</issn><issn>2541-2019</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdj7FqwzAURUVoIaHNF2TR2A5xJUsK9ezUBLJk6BCyCNV9SkRkybxnCv37xsFf0OleuBwuh7GVFIVSqjJvFNIVcyp-3oMupJbazNiiNFquSyGrh6kLrY9ztiQKX8LIjTC63CzYqc5dH2EAvgdMEHkT6ALIt4FaDF1ILg38pd4321fu0jevc8zj6j0gpBb4LtCQz-g67m_DwcVuZMERPLNH7yLBcsonppqPz3q3bjETIXjb3x4c_lop7N3ETiZ2NLF3E_U_6g-OyFZJ</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Perangin Angin, Johanes Terang Kita</creator><creator>Herman, Herman</creator><creator>Joni, Joni</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20241102</creationdate><title>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</title><author>Perangin Angin, Johanes Terang Kita ; Herman, Herman ; Joni, Joni</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_33395_sinkron_v8i4_141453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Perangin Angin, Johanes Terang Kita</creatorcontrib><creatorcontrib>Herman, Herman</creatorcontrib><creatorcontrib>Joni, Joni</creatorcontrib><collection>CrossRef</collection><jtitle>sinkron</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perangin Angin, Johanes Terang Kita</au><au>Herman, Herman</au><au>Joni, Joni</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease</atitle><jtitle>sinkron</jtitle><date>2024-11-02</date><risdate>2024</risdate><volume>8</volume><issue>4</issue><spage>2568</spage><epage>2574</epage><pages>2568-2574</pages><issn>2541-044X</issn><eissn>2541-2019</eissn><abstract>Palm oil plantations play a significant role in the economy of Indonesia, supporting 16.2 million people. However, plant diseases pose a major threat to the productivity and health of palm oil crops. Early detection of these diseases is essential to prevent yield losses and mitigate damage. This study proposes the application of the Complete Kernel Fisher Discriminant (CKFD) method combined with Color Difference Histogram to classify diseases affecting oil palm fronds and leaves. The CKFD method uses a non-linear kernel transformation to improve the performance of Fisher Linear Discriminant Analysis (FLDA), while the Color Difference Histogram enhances sensitivity to color variations in different lighting conditions. Experimental results demonstrate that the CKFD method achieves superior accuracy in disease detection compared to traditional Convolutional Neural Networks (CNN) and Support Vector Machines (SVM). The proposed approach showed an average accuracy of 94.5% for detecting diseases like Curvularia sp and Cochliobolus carbonus. The combination of CKFD with Color Difference Histogram significantly reduces the impact of lighting variations on the classification results, making it a robust solution for practical deployment in palm oil plantations. This research provides an effective tool for early disease detection and management in the palm oil industry.</abstract><doi>10.33395/sinkron.v8i4.14145</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2541-044X |
ispartof | sinkron, 2024-11, Vol.8 (4), p.2568-2574 |
issn | 2541-044X 2541-2019 |
language | eng |
recordid | cdi_crossref_primary_10_33395_sinkron_v8i4_14145 |
source | Alma/SFX Local Collection |
title | Complete Kernel Fisher Discriminant (CKFD) and Color Difference Histogram for Palm Disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T12%3A22%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Kernel%20Fisher%20Discriminant%20(CKFD)%20and%20Color%20Difference%20Histogram%20for%20Palm%20Disease&rft.jtitle=sinkron&rft.au=Perangin%20Angin,%20Johanes%20Terang%20Kita&rft.date=2024-11-02&rft.volume=8&rft.issue=4&rft.spage=2568&rft.epage=2574&rft.pages=2568-2574&rft.issn=2541-044X&rft.eissn=2541-2019&rft_id=info:doi/10.33395/sinkron.v8i4.14145&rft_dat=%3Ccrossref%3E10_33395_sinkron_v8i4_14145%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |