Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes

The paper presents the application of artificial neural network for simulation and diagnostic purposes applied to a gas turbine powered marine propulsion plant. A simulation code for the propulsion system, developed by the authors, has been extended to take into account components degradation or mal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of naval architecture and marine engineering 2015-07, Vol.12 (1), p.1-14
Hauptverfasser: Campora, U., Capelli, M., Cravero, C., Zaccone, R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue 1
container_start_page 1
container_title Journal of naval architecture and marine engineering
container_volume 12
creator Campora, U.
Capelli, M.
Cravero, C.
Zaccone, R.
description The paper presents the application of artificial neural network for simulation and diagnostic purposes applied to a gas turbine powered marine propulsion plant. A simulation code for the propulsion system, developed by the authors, has been extended to take into account components degradation or malfunctioning with the addition of performance reduction coefficients. The above coefficients become input variables to the analysis method and define the system status at a given operating point. The simulator is used to generate databases needed to perform a variable selection analysis and to tune response surfaces for both direct (simulation) and inverse (diagnostic) purposes. The application of the methodology to the propulsion system of an existing frigate version demonstrate the potential of the approach.
doi_str_mv 10.3329/jname.v12i1.19719
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3329_jname_v12i1_19719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3329_jname_v12i1_19719</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-7f6440fb98fac9e39cb4e23a282413f8fcbbee6d1bed09b8d198de26b4c9feb33</originalsourceid><addsrcrecordid>eNot0MtOwzAQBVALgURV-gHs_AMpfqWxl6jiJRWxgXXkx7gySuLIk4D699DAanRncXV1CLnlbCulMHefg-1h-8VF4ltuGm4uyEqwhlXaGH1JVlxzWela1tdkg5gcU6pRNW_kivhXmGyfA3RIc6SWHi3SaS4uDUDH_A0FAu1tWWLJ49xhygPFE07Q05gLxdTPnZ3OXzsEGpI9Dhmn5Ok4lzEj4A25irZD2PzfNfl4fHjfP1eHt6eX_f2h8kLVU9XEnVIsOqOj9Qak8U6BkFZoobiMOnrnAHaBOwjMOB240QHEzilvIjgp14T_9fqSEQvEdizpd_up5aw9Q7ULVLtAtQuU_AEMUGG1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Campora, U. ; Capelli, M. ; Cravero, C. ; Zaccone, R.</creator><creatorcontrib>Campora, U. ; Capelli, M. ; Cravero, C. ; Zaccone, R.</creatorcontrib><description>The paper presents the application of artificial neural network for simulation and diagnostic purposes applied to a gas turbine powered marine propulsion plant. A simulation code for the propulsion system, developed by the authors, has been extended to take into account components degradation or malfunctioning with the addition of performance reduction coefficients. The above coefficients become input variables to the analysis method and define the system status at a given operating point. The simulator is used to generate databases needed to perform a variable selection analysis and to tune response surfaces for both direct (simulation) and inverse (diagnostic) purposes. The application of the methodology to the propulsion system of an existing frigate version demonstrate the potential of the approach.</description><identifier>ISSN: 1813-8535</identifier><identifier>EISSN: 2070-8998</identifier><identifier>DOI: 10.3329/jname.v12i1.19719</identifier><language>eng</language><ispartof>Journal of naval architecture and marine engineering, 2015-07, Vol.12 (1), p.1-14</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c245t-7f6440fb98fac9e39cb4e23a282413f8fcbbee6d1bed09b8d198de26b4c9feb33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Campora, U.</creatorcontrib><creatorcontrib>Capelli, M.</creatorcontrib><creatorcontrib>Cravero, C.</creatorcontrib><creatorcontrib>Zaccone, R.</creatorcontrib><title>Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes</title><title>Journal of naval architecture and marine engineering</title><description>The paper presents the application of artificial neural network for simulation and diagnostic purposes applied to a gas turbine powered marine propulsion plant. A simulation code for the propulsion system, developed by the authors, has been extended to take into account components degradation or malfunctioning with the addition of performance reduction coefficients. The above coefficients become input variables to the analysis method and define the system status at a given operating point. The simulator is used to generate databases needed to perform a variable selection analysis and to tune response surfaces for both direct (simulation) and inverse (diagnostic) purposes. The application of the methodology to the propulsion system of an existing frigate version demonstrate the potential of the approach.</description><issn>1813-8535</issn><issn>2070-8998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNot0MtOwzAQBVALgURV-gHs_AMpfqWxl6jiJRWxgXXkx7gySuLIk4D699DAanRncXV1CLnlbCulMHefg-1h-8VF4ltuGm4uyEqwhlXaGH1JVlxzWela1tdkg5gcU6pRNW_kivhXmGyfA3RIc6SWHi3SaS4uDUDH_A0FAu1tWWLJ49xhygPFE07Q05gLxdTPnZ3OXzsEGpI9Dhmn5Ok4lzEj4A25irZD2PzfNfl4fHjfP1eHt6eX_f2h8kLVU9XEnVIsOqOj9Qak8U6BkFZoobiMOnrnAHaBOwjMOB240QHEzilvIjgp14T_9fqSEQvEdizpd_up5aw9Q7ULVLtAtQuU_AEMUGG1</recordid><startdate>20150709</startdate><enddate>20150709</enddate><creator>Campora, U.</creator><creator>Capelli, M.</creator><creator>Cravero, C.</creator><creator>Zaccone, R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150709</creationdate><title>Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes</title><author>Campora, U. ; Capelli, M. ; Cravero, C. ; Zaccone, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-7f6440fb98fac9e39cb4e23a282413f8fcbbee6d1bed09b8d198de26b4c9feb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campora, U.</creatorcontrib><creatorcontrib>Capelli, M.</creatorcontrib><creatorcontrib>Cravero, C.</creatorcontrib><creatorcontrib>Zaccone, R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of naval architecture and marine engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campora, U.</au><au>Capelli, M.</au><au>Cravero, C.</au><au>Zaccone, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes</atitle><jtitle>Journal of naval architecture and marine engineering</jtitle><date>2015-07-09</date><risdate>2015</risdate><volume>12</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1813-8535</issn><eissn>2070-8998</eissn><abstract>The paper presents the application of artificial neural network for simulation and diagnostic purposes applied to a gas turbine powered marine propulsion plant. A simulation code for the propulsion system, developed by the authors, has been extended to take into account components degradation or malfunctioning with the addition of performance reduction coefficients. The above coefficients become input variables to the analysis method and define the system status at a given operating point. The simulator is used to generate databases needed to perform a variable selection analysis and to tune response surfaces for both direct (simulation) and inverse (diagnostic) purposes. The application of the methodology to the propulsion system of an existing frigate version demonstrate the potential of the approach.</abstract><doi>10.3329/jname.v12i1.19719</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1813-8535
ispartof Journal of naval architecture and marine engineering, 2015-07, Vol.12 (1), p.1-14
issn 1813-8535
2070-8998
language eng
recordid cdi_crossref_primary_10_3329_jname_v12i1_19719
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Metamodels of a gas turbine powered marine propulsion system for simulation and diagnostic purposes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A00%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metamodels%20of%20a%20gas%20turbine%20powered%20marine%20propulsion%20system%20for%20simulation%20and%20diagnostic%20purposes&rft.jtitle=Journal%20of%20naval%20architecture%20and%20marine%20engineering&rft.au=Campora,%20U.&rft.date=2015-07-09&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1813-8535&rft.eissn=2070-8998&rft_id=info:doi/10.3329/jname.v12i1.19719&rft_dat=%3Ccrossref%3E10_3329_jname_v12i1_19719%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true