Investigating a Boron Nitride Plate for the Formaldehyde Adsorption: Density Functional Theory Calculations
A boron nitride (BN) plate was investigated in this work for adsorbing the formaldehyde (Frm) substance by performing the density functional theory (DFT) calculations. The singular models of BN and Frm were optimized first, and their combinations were re-optimized next to obtain Frm@BN complexes; F1...
Gespeichert in:
Veröffentlicht in: | Biointerface Research in Applied Chemistry 2023, Vol.13 (4), p.346 |
---|---|
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A boron nitride (BN) plate was investigated in this work for adsorbing the formaldehyde (Frm) substance by performing the density functional theory (DFT) calculations. The singular models of BN and Frm were optimized first, and their combinations were re-optimized next to obtain Frm@BN complexes; F1 and F2 were found. To manage the interaction processes, an iron (Fe) atom was inserted in the center of a small plate. The results showed the benefits of such atomic insertion for approaching the goal of this work. Details of interactions were analyzed, and the results show the existence of two interactions for each of obtained Frm@BN bimolecular models. The model with O…Fe, and H…N interactions (F1) was placed at a higher level of strength than the model with the existence of H…Fe and H…N interactions (F2). Accordingly, energy levels of characteristic frontier molecular orbitals and their related features affirmed the impacts of complex formations leading to the possibility of running diagnostic processes. Additionally, the role of the Fe-doped region was dominant in conducting the adsorption processes, and the results of both F1 and F2 complexes revealed such importance. Consequently, the stabilized models regarding the energies and interactions details affirmed this achievement for proposing the formations of Frm@BN complexes for environmental applications. |
---|---|
ISSN: | 2069-5837 2069-5837 |
DOI: | 10.33263/BRIAC134.346 |