Moving least squares approximation using variably scaled discontinuous weight function
Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper,...
Gespeichert in:
Veröffentlicht in: | Constructive mathematical analysis 2023-03, Vol.6 (1), p.38-54 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 54 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Constructive mathematical analysis |
container_volume | 6 |
creator | Karimnejad Esfahani, Mohammad De Marchı, Stefano Marchetti, Francesco |
description | Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically. |
doi_str_mv | 10.33205/cma.1247239 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33205_cma_1247239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33205_cma_1247239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-3759c0d228b6d3dc5cc31d7aeca4a7cb5eed3f1f231361b1a716d5ef5a9709433</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EElXpjg_wB5Bi-8YxXqKKR6UiNsA2uvGjGKVxsJNC_54WumA1s5gZjQ4hl5zNAQST12aDcy5KJUCfkImoJC-EBn36z5-TWc4fjDGhdMkZTMjbU9yGbk1bh3mg-XPE5DLFvk_xO2xwCLGjYz4ktpgCNu2OZoOts9SGbGI3hG6MY6ZfLqzfB-rHzhw6F-TMY5vd7KhT8np_97J4LFbPD8vF7aowAthQgJLaMCvETVNZsEYaA9wqdAZLVKaRzlnw3AvgUPGGo-KVlc5L1IrpEmBKrv52TYo5J-frPu1vp13NWf2Lpd5jqY9Y4Ad-pFgp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moving least squares approximation using variably scaled discontinuous weight function</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Karimnejad Esfahani, Mohammad ; De Marchı, Stefano ; Marchetti, Francesco</creator><creatorcontrib>Karimnejad Esfahani, Mohammad ; De Marchı, Stefano ; Marchetti, Francesco</creatorcontrib><description>Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.</description><identifier>ISSN: 2651-2939</identifier><identifier>EISSN: 2651-2939</identifier><identifier>DOI: 10.33205/cma.1247239</identifier><language>eng</language><ispartof>Constructive mathematical analysis, 2023-03, Vol.6 (1), p.38-54</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-3759c0d228b6d3dc5cc31d7aeca4a7cb5eed3f1f231361b1a716d5ef5a9709433</cites><orcidid>0000-0003-1087-7589 ; 0000-0002-2832-8476 ; 0000-0002-8532-8819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Karimnejad Esfahani, Mohammad</creatorcontrib><creatorcontrib>De Marchı, Stefano</creatorcontrib><creatorcontrib>Marchetti, Francesco</creatorcontrib><title>Moving least squares approximation using variably scaled discontinuous weight function</title><title>Constructive mathematical analysis</title><description>Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.</description><issn>2651-2939</issn><issn>2651-2939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EElXpjg_wB5Bi-8YxXqKKR6UiNsA2uvGjGKVxsJNC_54WumA1s5gZjQ4hl5zNAQST12aDcy5KJUCfkImoJC-EBn36z5-TWc4fjDGhdMkZTMjbU9yGbk1bh3mg-XPE5DLFvk_xO2xwCLGjYz4ktpgCNu2OZoOts9SGbGI3hG6MY6ZfLqzfB-rHzhw6F-TMY5vd7KhT8np_97J4LFbPD8vF7aowAthQgJLaMCvETVNZsEYaA9wqdAZLVKaRzlnw3AvgUPGGo-KVlc5L1IrpEmBKrv52TYo5J-frPu1vp13NWf2Lpd5jqY9Y4Ad-pFgp</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Karimnejad Esfahani, Mohammad</creator><creator>De Marchı, Stefano</creator><creator>Marchetti, Francesco</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1087-7589</orcidid><orcidid>https://orcid.org/0000-0002-2832-8476</orcidid><orcidid>https://orcid.org/0000-0002-8532-8819</orcidid></search><sort><creationdate>20230315</creationdate><title>Moving least squares approximation using variably scaled discontinuous weight function</title><author>Karimnejad Esfahani, Mohammad ; De Marchı, Stefano ; Marchetti, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-3759c0d228b6d3dc5cc31d7aeca4a7cb5eed3f1f231361b1a716d5ef5a9709433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Karimnejad Esfahani, Mohammad</creatorcontrib><creatorcontrib>De Marchı, Stefano</creatorcontrib><creatorcontrib>Marchetti, Francesco</creatorcontrib><collection>CrossRef</collection><jtitle>Constructive mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimnejad Esfahani, Mohammad</au><au>De Marchı, Stefano</au><au>Marchetti, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving least squares approximation using variably scaled discontinuous weight function</atitle><jtitle>Constructive mathematical analysis</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>38</spage><epage>54</epage><pages>38-54</pages><issn>2651-2939</issn><eissn>2651-2939</eissn><abstract>Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.</abstract><doi>10.33205/cma.1247239</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1087-7589</orcidid><orcidid>https://orcid.org/0000-0002-2832-8476</orcidid><orcidid>https://orcid.org/0000-0002-8532-8819</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2651-2939 |
ispartof | Constructive mathematical analysis, 2023-03, Vol.6 (1), p.38-54 |
issn | 2651-2939 2651-2939 |
language | eng |
recordid | cdi_crossref_primary_10_33205_cma_1247239 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Moving least squares approximation using variably scaled discontinuous weight function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20least%20squares%20approximation%20using%20variably%20scaled%20discontinuous%20weight%20function&rft.jtitle=Constructive%20mathematical%20analysis&rft.au=Karimnejad%20Esfahani,%20Mohammad&rft.date=2023-03-15&rft.volume=6&rft.issue=1&rft.spage=38&rft.epage=54&rft.pages=38-54&rft.issn=2651-2939&rft.eissn=2651-2939&rft_id=info:doi/10.33205/cma.1247239&rft_dat=%3Ccrossref%3E10_33205_cma_1247239%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |