Moving least squares approximation using variably scaled discontinuous weight function

Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive mathematical analysis 2023-03, Vol.6 (1), p.38-54
Hauptverfasser: Karimnejad Esfahani, Mohammad, De Marchı, Stefano, Marchetti, Francesco
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 54
container_issue 1
container_start_page 38
container_title Constructive mathematical analysis
container_volume 6
creator Karimnejad Esfahani, Mohammad
De Marchı, Stefano
Marchetti, Francesco
description Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.
doi_str_mv 10.33205/cma.1247239
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_33205_cma_1247239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_33205_cma_1247239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-3759c0d228b6d3dc5cc31d7aeca4a7cb5eed3f1f231361b1a716d5ef5a9709433</originalsourceid><addsrcrecordid>eNpNkMtOwzAURC0EElXpjg_wB5Bi-8YxXqKKR6UiNsA2uvGjGKVxsJNC_54WumA1s5gZjQ4hl5zNAQST12aDcy5KJUCfkImoJC-EBn36z5-TWc4fjDGhdMkZTMjbU9yGbk1bh3mg-XPE5DLFvk_xO2xwCLGjYz4ktpgCNu2OZoOts9SGbGI3hG6MY6ZfLqzfB-rHzhw6F-TMY5vd7KhT8np_97J4LFbPD8vF7aowAthQgJLaMCvETVNZsEYaA9wqdAZLVKaRzlnw3AvgUPGGo-KVlc5L1IrpEmBKrv52TYo5J-frPu1vp13NWf2Lpd5jqY9Y4Ad-pFgp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Moving least squares approximation using variably scaled discontinuous weight function</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Karimnejad Esfahani, Mohammad ; De Marchı, Stefano ; Marchetti, Francesco</creator><creatorcontrib>Karimnejad Esfahani, Mohammad ; De Marchı, Stefano ; Marchetti, Francesco</creatorcontrib><description>Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.</description><identifier>ISSN: 2651-2939</identifier><identifier>EISSN: 2651-2939</identifier><identifier>DOI: 10.33205/cma.1247239</identifier><language>eng</language><ispartof>Constructive mathematical analysis, 2023-03, Vol.6 (1), p.38-54</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c230t-3759c0d228b6d3dc5cc31d7aeca4a7cb5eed3f1f231361b1a716d5ef5a9709433</cites><orcidid>0000-0003-1087-7589 ; 0000-0002-2832-8476 ; 0000-0002-8532-8819</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Karimnejad Esfahani, Mohammad</creatorcontrib><creatorcontrib>De Marchı, Stefano</creatorcontrib><creatorcontrib>Marchetti, Francesco</creatorcontrib><title>Moving least squares approximation using variably scaled discontinuous weight function</title><title>Constructive mathematical analysis</title><description>Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.</description><issn>2651-2939</issn><issn>2651-2939</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtOwzAURC0EElXpjg_wB5Bi-8YxXqKKR6UiNsA2uvGjGKVxsJNC_54WumA1s5gZjQ4hl5zNAQST12aDcy5KJUCfkImoJC-EBn36z5-TWc4fjDGhdMkZTMjbU9yGbk1bh3mg-XPE5DLFvk_xO2xwCLGjYz4ktpgCNu2OZoOts9SGbGI3hG6MY6ZfLqzfB-rHzhw6F-TMY5vd7KhT8np_97J4LFbPD8vF7aowAthQgJLaMCvETVNZsEYaA9wqdAZLVKaRzlnw3AvgUPGGo-KVlc5L1IrpEmBKrv52TYo5J-frPu1vp13NWf2Lpd5jqY9Y4Ad-pFgp</recordid><startdate>20230315</startdate><enddate>20230315</enddate><creator>Karimnejad Esfahani, Mohammad</creator><creator>De Marchı, Stefano</creator><creator>Marchetti, Francesco</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1087-7589</orcidid><orcidid>https://orcid.org/0000-0002-2832-8476</orcidid><orcidid>https://orcid.org/0000-0002-8532-8819</orcidid></search><sort><creationdate>20230315</creationdate><title>Moving least squares approximation using variably scaled discontinuous weight function</title><author>Karimnejad Esfahani, Mohammad ; De Marchı, Stefano ; Marchetti, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-3759c0d228b6d3dc5cc31d7aeca4a7cb5eed3f1f231361b1a716d5ef5a9709433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Karimnejad Esfahani, Mohammad</creatorcontrib><creatorcontrib>De Marchı, Stefano</creatorcontrib><creatorcontrib>Marchetti, Francesco</creatorcontrib><collection>CrossRef</collection><jtitle>Constructive mathematical analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karimnejad Esfahani, Mohammad</au><au>De Marchı, Stefano</au><au>Marchetti, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moving least squares approximation using variably scaled discontinuous weight function</atitle><jtitle>Constructive mathematical analysis</jtitle><date>2023-03-15</date><risdate>2023</risdate><volume>6</volume><issue>1</issue><spage>38</spage><epage>54</epage><pages>38-54</pages><issn>2651-2939</issn><eissn>2651-2939</eissn><abstract>Functions with discontinuities appear in many applications such as image reconstruction, signal processing, optimal control problems, interface problems, engineering applications and so on. Accurate approximation and interpolation of these functions are therefore of great importance. In this paper, we design a moving least-squares approach for scattered data approximation that incorporates the discontinuities in the weight functions. The idea is to control the influence of the data sites on the approximant, not only with regards to their distance from the evaluation point, but also with respect to the discontinuity of the underlying function. We also provide an error estimate on a suitable piecewise Sobolev Space. The numerical experiments are in compliance with the convergence rate derived theoretically.</abstract><doi>10.33205/cma.1247239</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-1087-7589</orcidid><orcidid>https://orcid.org/0000-0002-2832-8476</orcidid><orcidid>https://orcid.org/0000-0002-8532-8819</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2651-2939
ispartof Constructive mathematical analysis, 2023-03, Vol.6 (1), p.38-54
issn 2651-2939
2651-2939
language eng
recordid cdi_crossref_primary_10_33205_cma_1247239
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Moving least squares approximation using variably scaled discontinuous weight function
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T03%3A13%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moving%20least%20squares%20approximation%20using%20variably%20scaled%20discontinuous%20weight%20function&rft.jtitle=Constructive%20mathematical%20analysis&rft.au=Karimnejad%20Esfahani,%20Mohammad&rft.date=2023-03-15&rft.volume=6&rft.issue=1&rft.spage=38&rft.epage=54&rft.pages=38-54&rft.issn=2651-2939&rft.eissn=2651-2939&rft_id=info:doi/10.33205/cma.1247239&rft_dat=%3Ccrossref%3E10_33205_cma_1247239%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true