Forecasting Daily Water Consumption: a Case Study in Torun, Poland
This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Abso...
Gespeichert in:
Veröffentlicht in: | Periodica polytechnica. Civil engineering. Bauingenieurwesen 2018-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Periodica polytechnica. Civil engineering. Bauingenieurwesen |
container_volume | |
creator | Piasecki, Adam Jurasz, Jakub Kaźmierczak, Bartosz |
description | This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited. |
doi_str_mv | 10.3311/PPci.11930 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3311_PPci_11930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3311_PPci_11930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1820-8c12c9df70d93b431df300359b5bc4070b780bfc0dc62b56c0c72173f9e480993</originalsourceid><addsrcrecordid>eNotz09LwzAYgPEgCtbpxU-Qs9j5pm-TNN60cyoMLDjxWPKnlUqXjKQ79NvL1NNze-BHyDWDJSJjd01jhyVjCuGEZIxXMkcp8ZRkwDnmQhTinFyk9A0gOCJk5HEdYmd1mgb_RVd6GGf6qacu0jr4dNjtpyH4e6pprVNH36eDm-ng6TbEg7-lTRi1d5fkrNdj6q7-uyAf66dt_ZJv3p5f64dNbllVQF5ZVljleglOoSmRuR4BkCvDjS1BgpEVmN6Cs6IwXFiwsmASe9WVFSiFC3Lz97UxpBS7vt3HYafj3DJoj_r2qG9_9fgDEBtLqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Piasecki, Adam ; Jurasz, Jakub ; Kaźmierczak, Bartosz</creator><creatorcontrib>Piasecki, Adam ; Jurasz, Jakub ; Kaźmierczak, Bartosz</creatorcontrib><description>This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.</description><identifier>ISSN: 0553-6626</identifier><identifier>EISSN: 1587-3773</identifier><identifier>DOI: 10.3311/PPci.11930</identifier><language>eng</language><ispartof>Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2018-05</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1820-8c12c9df70d93b431df300359b5bc4070b780bfc0dc62b56c0c72173f9e480993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Jurasz, Jakub</creatorcontrib><creatorcontrib>Kaźmierczak, Bartosz</creatorcontrib><title>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</title><title>Periodica polytechnica. Civil engineering. Bauingenieurwesen</title><description>This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.</description><issn>0553-6626</issn><issn>1587-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotz09LwzAYgPEgCtbpxU-Qs9j5pm-TNN60cyoMLDjxWPKnlUqXjKQ79NvL1NNze-BHyDWDJSJjd01jhyVjCuGEZIxXMkcp8ZRkwDnmQhTinFyk9A0gOCJk5HEdYmd1mgb_RVd6GGf6qacu0jr4dNjtpyH4e6pprVNH36eDm-ng6TbEg7-lTRi1d5fkrNdj6q7-uyAf66dt_ZJv3p5f64dNbllVQF5ZVljleglOoSmRuR4BkCvDjS1BgpEVmN6Cs6IwXFiwsmASe9WVFSiFC3Lz97UxpBS7vt3HYafj3DJoj_r2qG9_9fgDEBtLqg</recordid><startdate>20180522</startdate><enddate>20180522</enddate><creator>Piasecki, Adam</creator><creator>Jurasz, Jakub</creator><creator>Kaźmierczak, Bartosz</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180522</creationdate><title>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</title><author>Piasecki, Adam ; Jurasz, Jakub ; Kaźmierczak, Bartosz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1820-8c12c9df70d93b431df300359b5bc4070b780bfc0dc62b56c0c72173f9e480993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Jurasz, Jakub</creatorcontrib><creatorcontrib>Kaźmierczak, Bartosz</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piasecki, Adam</au><au>Jurasz, Jakub</au><au>Kaźmierczak, Bartosz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</atitle><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle><date>2018-05-22</date><risdate>2018</risdate><issn>0553-6626</issn><eissn>1587-3773</eissn><abstract>This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.</abstract><doi>10.3311/PPci.11930</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0553-6626 |
ispartof | Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2018-05 |
issn | 0553-6626 1587-3773 |
language | eng |
recordid | cdi_crossref_primary_10_3311_PPci_11930 |
source | EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
title | Forecasting Daily Water Consumption: a Case Study in Torun, Poland |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Daily%20Water%20Consumption:%20a%20Case%20Study%20in%20Torun,%20Poland&rft.jtitle=Periodica%20polytechnica.%20Civil%20engineering.%20Bauingenieurwesen&rft.au=Piasecki,%20Adam&rft.date=2018-05-22&rft.issn=0553-6626&rft.eissn=1587-3773&rft_id=info:doi/10.3311/PPci.11930&rft_dat=%3Ccrossref%3E10_3311_PPci_11930%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |