Forecasting Daily Water Consumption: a Case Study in Torun, Poland

This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Abso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Periodica polytechnica. Civil engineering. Bauingenieurwesen 2018-05
Hauptverfasser: Piasecki, Adam, Jurasz, Jakub, Kaźmierczak, Bartosz
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Periodica polytechnica. Civil engineering. Bauingenieurwesen
container_volume
creator Piasecki, Adam
Jurasz, Jakub
Kaźmierczak, Bartosz
description This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.
doi_str_mv 10.3311/PPci.11930
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3311_PPci_11930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3311_PPci_11930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1820-8c12c9df70d93b431df300359b5bc4070b780bfc0dc62b56c0c72173f9e480993</originalsourceid><addsrcrecordid>eNotz09LwzAYgPEgCtbpxU-Qs9j5pm-TNN60cyoMLDjxWPKnlUqXjKQ79NvL1NNze-BHyDWDJSJjd01jhyVjCuGEZIxXMkcp8ZRkwDnmQhTinFyk9A0gOCJk5HEdYmd1mgb_RVd6GGf6qacu0jr4dNjtpyH4e6pprVNH36eDm-ng6TbEg7-lTRi1d5fkrNdj6q7-uyAf66dt_ZJv3p5f64dNbllVQF5ZVljleglOoSmRuR4BkCvDjS1BgpEVmN6Cs6IwXFiwsmASe9WVFSiFC3Lz97UxpBS7vt3HYafj3DJoj_r2qG9_9fgDEBtLqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Piasecki, Adam ; Jurasz, Jakub ; Kaźmierczak, Bartosz</creator><creatorcontrib>Piasecki, Adam ; Jurasz, Jakub ; Kaźmierczak, Bartosz</creatorcontrib><description>This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.</description><identifier>ISSN: 0553-6626</identifier><identifier>EISSN: 1587-3773</identifier><identifier>DOI: 10.3311/PPci.11930</identifier><language>eng</language><ispartof>Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2018-05</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1820-8c12c9df70d93b431df300359b5bc4070b780bfc0dc62b56c0c72173f9e480993</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Jurasz, Jakub</creatorcontrib><creatorcontrib>Kaźmierczak, Bartosz</creatorcontrib><title>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</title><title>Periodica polytechnica. Civil engineering. Bauingenieurwesen</title><description>This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.</description><issn>0553-6626</issn><issn>1587-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNotz09LwzAYgPEgCtbpxU-Qs9j5pm-TNN60cyoMLDjxWPKnlUqXjKQ79NvL1NNze-BHyDWDJSJjd01jhyVjCuGEZIxXMkcp8ZRkwDnmQhTinFyk9A0gOCJk5HEdYmd1mgb_RVd6GGf6qacu0jr4dNjtpyH4e6pprVNH36eDm-ng6TbEg7-lTRi1d5fkrNdj6q7-uyAf66dt_ZJv3p5f64dNbllVQF5ZVljleglOoSmRuR4BkCvDjS1BgpEVmN6Cs6IwXFiwsmASe9WVFSiFC3Lz97UxpBS7vt3HYafj3DJoj_r2qG9_9fgDEBtLqg</recordid><startdate>20180522</startdate><enddate>20180522</enddate><creator>Piasecki, Adam</creator><creator>Jurasz, Jakub</creator><creator>Kaźmierczak, Bartosz</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180522</creationdate><title>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</title><author>Piasecki, Adam ; Jurasz, Jakub ; Kaźmierczak, Bartosz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1820-8c12c9df70d93b431df300359b5bc4070b780bfc0dc62b56c0c72173f9e480993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piasecki, Adam</creatorcontrib><creatorcontrib>Jurasz, Jakub</creatorcontrib><creatorcontrib>Kaźmierczak, Bartosz</creatorcontrib><collection>CrossRef</collection><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piasecki, Adam</au><au>Jurasz, Jakub</au><au>Kaźmierczak, Bartosz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forecasting Daily Water Consumption: a Case Study in Torun, Poland</atitle><jtitle>Periodica polytechnica. Civil engineering. Bauingenieurwesen</jtitle><date>2018-05-22</date><risdate>2018</risdate><issn>0553-6626</issn><eissn>1587-3773</eissn><abstract>This paper presents Artificial Neural Network (ANN) and Multiple Linear Regression (MLR) methods for predicting future daily water consumption values based on three antecedent records of water consumption and humidity forecast for a given day, which are considered as independent variables. Mean Absolute Percentage Error (MAPE) is obtained for different configurations of the input sets and of the ANN model structure. Additionally, sets of explanatory variables are enhanced with dummy variables indicating typical days: working day, Saturday, Sunday/public holidays. The results indicated the superiority of the ANN approach over MLR, although the observed difference in performance was very limited.</abstract><doi>10.3311/PPci.11930</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0553-6626
ispartof Periodica polytechnica. Civil engineering. Bauingenieurwesen, 2018-05
issn 0553-6626
1587-3773
language eng
recordid cdi_crossref_primary_10_3311_PPci_11930
source EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
title Forecasting Daily Water Consumption: a Case Study in Torun, Poland
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A13%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forecasting%20Daily%20Water%20Consumption:%20a%20Case%20Study%20in%20Torun,%20Poland&rft.jtitle=Periodica%20polytechnica.%20Civil%20engineering.%20Bauingenieurwesen&rft.au=Piasecki,%20Adam&rft.date=2018-05-22&rft.issn=0553-6626&rft.eissn=1587-3773&rft_id=info:doi/10.3311/PPci.11930&rft_dat=%3Ccrossref%3E10_3311_PPci_11930%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true