An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients

Based on rectangular partition and bilinear interpolation, we construct an alternating-direction implicit (ADI) finite volume element method, which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficient...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2020-01, Vol.123 (2), p.739-776
Hauptverfasser: Su, Mengya, Ren, Zhihao, Zhang, Zhiyue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 776
container_issue 2
container_start_page 739
container_title Computer modeling in engineering & sciences
container_volume 123
creator Su, Mengya
Ren, Zhihao
Zhang, Zhiyue
description Based on rectangular partition and bilinear interpolation, we construct an alternating-direction implicit (ADI) finite volume element method, which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients. This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes. Optimal error estimate in L2 norm is obtained for the schemes. Compared with the finite volume element method of the same convergence order, our method is more effective in terms of running time with the increasing of the computing scale. Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.
doi_str_mv 10.32604/cmes.2020.08563
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_32604_cmes_2020_08563</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>tsp/cmes/2020/00000123/00000002/art00013</ingid><sourcerecordid>2397263489</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-8f3a0a150578d443c0c6533688e85228abe6e864f2648c3a1d3996a762b40ca53</originalsourceid><addsrcrecordid>eNpNULFOwzAQtRBIlMLOaIk5xfE5jrNRlRYqgVigSCyW6zrUVRq3tgPi70kaENxyT6f33t09hC5TMgLKCbvWWxNGlFAyIiLjcIQGaUZ5kmaEH_9iVtBTdBbChhDgIIoBehvXeHw7xzNb22jwwlXN1uBpZbamjvjRxLVb4dJ5rPDCBu2agF_VR8vYNypaV-NPG9d4obxVy8rgiTNlabVtxeEcnZSqCubipw_Ry2z6PLlPHp7u5pPxQ6IhJzERJSii2jOzXKwYA000zwC4EEZklAq1NNwIzkrKmdCg0hUUBVc5p0tGtMpgiK563513-8aEKDeu8XW7UlIocsqBiaJlkZ6lvQvBm1LuvN0q_yVTIg8Jyi5B2SUoDwm2kpteYuv39iH15xvD7j-7q5RCDwihUvnYjQC-AZzddsU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397263489</pqid></control><display><type>article</type><title>An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients</title><source>Tech Science Press</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Su, Mengya ; Ren, Zhihao ; Zhang, Zhiyue</creator><creatorcontrib>Su, Mengya ; Ren, Zhihao ; Zhang, Zhiyue</creatorcontrib><description>Based on rectangular partition and bilinear interpolation, we construct an alternating-direction implicit (ADI) finite volume element method, which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients. This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes. Optimal error estimate in L2 norm is obtained for the schemes. Compared with the finite volume element method of the same convergence order, our method is more effective in terms of running time with the increasing of the computing scale. Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.</description><identifier>ISSN: 1526-1492</identifier><identifier>ISSN: 1526-1506</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2020.08563</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Alternating Direction Implicit Finite Volume Element Method ; Alternating direction implicit methods ; Error Estimates ; Interpolation ; L2 Norm ; Nonlinear programming ; Viscous Wave Equation ; Wave equations</subject><ispartof>Computer modeling in engineering &amp; sciences, 2020-01, Vol.123 (2), p.739-776</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-8f3a0a150578d443c0c6533688e85228abe6e864f2648c3a1d3996a762b40ca53</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Su, Mengya</creatorcontrib><creatorcontrib>Ren, Zhihao</creatorcontrib><creatorcontrib>Zhang, Zhiyue</creatorcontrib><title>An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients</title><title>Computer modeling in engineering &amp; sciences</title><description>Based on rectangular partition and bilinear interpolation, we construct an alternating-direction implicit (ADI) finite volume element method, which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients. This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes. Optimal error estimate in L2 norm is obtained for the schemes. Compared with the finite volume element method of the same convergence order, our method is more effective in terms of running time with the increasing of the computing scale. Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.</description><subject>Alternating Direction Implicit Finite Volume Element Method</subject><subject>Alternating direction implicit methods</subject><subject>Error Estimates</subject><subject>Interpolation</subject><subject>L2 Norm</subject><subject>Nonlinear programming</subject><subject>Viscous Wave Equation</subject><subject>Wave equations</subject><issn>1526-1492</issn><issn>1526-1506</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpNULFOwzAQtRBIlMLOaIk5xfE5jrNRlRYqgVigSCyW6zrUVRq3tgPi70kaENxyT6f33t09hC5TMgLKCbvWWxNGlFAyIiLjcIQGaUZ5kmaEH_9iVtBTdBbChhDgIIoBehvXeHw7xzNb22jwwlXN1uBpZbamjvjRxLVb4dJ5rPDCBu2agF_VR8vYNypaV-NPG9d4obxVy8rgiTNlabVtxeEcnZSqCubipw_Ry2z6PLlPHp7u5pPxQ6IhJzERJSii2jOzXKwYA000zwC4EEZklAq1NNwIzkrKmdCg0hUUBVc5p0tGtMpgiK563513-8aEKDeu8XW7UlIocsqBiaJlkZ6lvQvBm1LuvN0q_yVTIg8Jyi5B2SUoDwm2kpteYuv39iH15xvD7j-7q5RCDwihUvnYjQC-AZzddsU</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Su, Mengya</creator><creator>Ren, Zhihao</creator><creator>Zhang, Zhiyue</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200101</creationdate><title>An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients</title><author>Su, Mengya ; Ren, Zhihao ; Zhang, Zhiyue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-8f3a0a150578d443c0c6533688e85228abe6e864f2648c3a1d3996a762b40ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternating Direction Implicit Finite Volume Element Method</topic><topic>Alternating direction implicit methods</topic><topic>Error Estimates</topic><topic>Interpolation</topic><topic>L2 Norm</topic><topic>Nonlinear programming</topic><topic>Viscous Wave Equation</topic><topic>Wave equations</topic><toplevel>online_resources</toplevel><creatorcontrib>Su, Mengya</creatorcontrib><creatorcontrib>Ren, Zhihao</creatorcontrib><creatorcontrib>Zhang, Zhiyue</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Su, Mengya</au><au>Ren, Zhihao</au><au>Zhang, Zhiyue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>123</volume><issue>2</issue><spage>739</spage><epage>776</epage><pages>739-776</pages><issn>1526-1492</issn><issn>1526-1506</issn><eissn>1526-1506</eissn><abstract>Based on rectangular partition and bilinear interpolation, we construct an alternating-direction implicit (ADI) finite volume element method, which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients. This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes. Optimal error estimate in L2 norm is obtained for the schemes. Compared with the finite volume element method of the same convergence order, our method is more effective in terms of running time with the increasing of the computing scale. Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2020.08563</doi><tpages>38</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2020-01, Vol.123 (2), p.739-776
issn 1526-1492
1526-1506
1526-1506
language eng
recordid cdi_crossref_primary_10_32604_cmes_2020_08563
source Tech Science Press; EZB-FREE-00999 freely available EZB journals
subjects Alternating Direction Implicit Finite Volume Element Method
Alternating direction implicit methods
Error Estimates
Interpolation
L2 Norm
Nonlinear programming
Viscous Wave Equation
Wave equations
title An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T19%3A14%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ADI%20Finite%20Volume%20Element%20Method%20for%20a%20Viscous%20Wave%20Equation%20with%20Variable%20Coefficients&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Su,%20Mengya&rft.date=2020-01-01&rft.volume=123&rft.issue=2&rft.spage=739&rft.epage=776&rft.pages=739-776&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2020.08563&rft_dat=%3Cproquest_cross%3E2397263489%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2397263489&rft_id=info:pmid/&rft_ingid=tsp/cmes/2020/00000123/00000002/art00013&rfr_iscdi=true