A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model

The essential features of the nonlinear stochastic models are positivity, dynamical consistency and boundedness. These features have a significant role in different fields of computational biology and many more. The aim of our paper, to achieve the comparison analysis of the stochastic susceptible,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer modeling in engineering & sciences 2020-01, Vol.124 (2), p.477-491
Hauptverfasser: Shoaib Arif, Muhammad, Raza, Ali, Abodayeh, Kamaleldin, Rafiq, Muhammad, Bibi, Mairaj, Nazeer, Amna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 491
container_issue 2
container_start_page 477
container_title Computer modeling in engineering & sciences
container_volume 124
creator Shoaib Arif, Muhammad
Raza, Ali
Abodayeh, Kamaleldin
Rafiq, Muhammad
Bibi, Mairaj
Nazeer, Amna
description The essential features of the nonlinear stochastic models are positivity, dynamical consistency and boundedness. These features have a significant role in different fields of computational biology and many more. The aim of our paper, to achieve the comparison analysis of the stochastic susceptible, infected recovered epidemic model. The stochastic modelling is a realistic way to study the dynamics of compartmental modelling as compared to deterministic modelling. The effect of reproduction number has also observed in the stochastic susceptible, infected recovered epidemic model. For comparison analysis, we developed some explicit stochastic techniques, but they are the time-dependent techniques. The implicitly driven explicit technique has developed for the stochastic susceptible, infected recovered epidemic model. In the support, some theorems and graphical illustration has presented. Also, the time efficiency of this method makes it easy to find the solution of the stochastic system. The comparison with other techniques shows the efficacy and reliability of the designed technique.
doi_str_mv 10.32604/cmes.2020.011121
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_32604_cmes_2020_011121</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ingid>tsp/cmes/2020/00000124/00000002/art00005</ingid><sourcerecordid>2429477394</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3591-ebc45c6b2290273a1bc5979ea020fdd24a69e5cbf0e357979a9f175c031ab6573</originalsourceid><addsrcrecordid>eNp1kU1P3DAQhqOKSoVtf0BvlnrexeOPpL6B0PIhUZC69Gw5zhiMsnFqO0j019chReWCL34lv_PM-J2q-gp0w1lNxbHdY9owyuiGAgCDD9UhSFavQdL64FULxT5VRyk9Uspr_l0dVuaU3Ex7jN6anmyd89bjkMkd2ofB_56QuBBJfkCyC_2UfRhIcGQ3JYtj9m2P5GpwaDN25Cfa8ISxqO3oO9x7S36EDvvP1Udn-oRf_t2r6tf59u7scn19e3F1dnq9tlwqWGNrhbR1y5iirOEGWitVo9CUL7muY8LUCqVtHUUum_JilINGWsrBtLVs-Kr6tnDHGMrgKevHMMWhtNRMMCWahitRXLC4bAwpRXR6jH5v4rMGql-S1HOSek5SL0mWmpOlxg_3JRzzH5zT-NY-H2BiEZQybWKehSyIm3cQ3r5Q5v3M69FPBTCwGQhUQa1BlME6dGbqs84m6vs_Okn-F_M1lSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429477394</pqid></control><display><type>article</type><title>A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Tech Science Press</source><creator>Shoaib Arif, Muhammad ; Raza, Ali ; Abodayeh, Kamaleldin ; Rafiq, Muhammad ; Bibi, Mairaj ; Nazeer, Amna</creator><creatorcontrib>Shoaib Arif, Muhammad ; Raza, Ali ; Abodayeh, Kamaleldin ; Rafiq, Muhammad ; Bibi, Mairaj ; Nazeer, Amna</creatorcontrib><description>The essential features of the nonlinear stochastic models are positivity, dynamical consistency and boundedness. These features have a significant role in different fields of computational biology and many more. The aim of our paper, to achieve the comparison analysis of the stochastic susceptible, infected recovered epidemic model. The stochastic modelling is a realistic way to study the dynamics of compartmental modelling as compared to deterministic modelling. The effect of reproduction number has also observed in the stochastic susceptible, infected recovered epidemic model. For comparison analysis, we developed some explicit stochastic techniques, but they are the time-dependent techniques. The implicitly driven explicit technique has developed for the stochastic susceptible, infected recovered epidemic model. In the support, some theorems and graphical illustration has presented. Also, the time efficiency of this method makes it easy to find the solution of the stochastic system. The comparison with other techniques shows the efficacy and reliability of the designed technique.</description><identifier>ISSN: 1526-1492</identifier><identifier>ISSN: 1526-1506</identifier><identifier>EISSN: 1526-1506</identifier><identifier>DOI: 10.32604/cmes.2020.011121</identifier><language>eng</language><publisher>Henderson: Tech Science Press</publisher><subject>Convergence Analysis ; Epidemics ; Epidemiolocal Model ; Stochastic Differential Equations ; Stochastic models ; Stochastic systems ; Stochastic Techniques ; Time dependence</subject><ispartof>Computer modeling in engineering &amp; sciences, 2020-01, Vol.124 (2), p.477-491</ispartof><rights>2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3591-ebc45c6b2290273a1bc5979ea020fdd24a69e5cbf0e357979a9f175c031ab6573</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Shoaib Arif, Muhammad</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Abodayeh, Kamaleldin</creatorcontrib><creatorcontrib>Rafiq, Muhammad</creatorcontrib><creatorcontrib>Bibi, Mairaj</creatorcontrib><creatorcontrib>Nazeer, Amna</creatorcontrib><title>A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model</title><title>Computer modeling in engineering &amp; sciences</title><description>The essential features of the nonlinear stochastic models are positivity, dynamical consistency and boundedness. These features have a significant role in different fields of computational biology and many more. The aim of our paper, to achieve the comparison analysis of the stochastic susceptible, infected recovered epidemic model. The stochastic modelling is a realistic way to study the dynamics of compartmental modelling as compared to deterministic modelling. The effect of reproduction number has also observed in the stochastic susceptible, infected recovered epidemic model. For comparison analysis, we developed some explicit stochastic techniques, but they are the time-dependent techniques. The implicitly driven explicit technique has developed for the stochastic susceptible, infected recovered epidemic model. In the support, some theorems and graphical illustration has presented. Also, the time efficiency of this method makes it easy to find the solution of the stochastic system. The comparison with other techniques shows the efficacy and reliability of the designed technique.</description><subject>Convergence Analysis</subject><subject>Epidemics</subject><subject>Epidemiolocal Model</subject><subject>Stochastic Differential Equations</subject><subject>Stochastic models</subject><subject>Stochastic systems</subject><subject>Stochastic Techniques</subject><subject>Time dependence</subject><issn>1526-1492</issn><issn>1526-1506</issn><issn>1526-1506</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kU1P3DAQhqOKSoVtf0BvlnrexeOPpL6B0PIhUZC69Gw5zhiMsnFqO0j019chReWCL34lv_PM-J2q-gp0w1lNxbHdY9owyuiGAgCDD9UhSFavQdL64FULxT5VRyk9Uspr_l0dVuaU3Ex7jN6anmyd89bjkMkd2ofB_56QuBBJfkCyC_2UfRhIcGQ3JYtj9m2P5GpwaDN25Cfa8ISxqO3oO9x7S36EDvvP1Udn-oRf_t2r6tf59u7scn19e3F1dnq9tlwqWGNrhbR1y5iirOEGWitVo9CUL7muY8LUCqVtHUUum_JilINGWsrBtLVs-Kr6tnDHGMrgKevHMMWhtNRMMCWahitRXLC4bAwpRXR6jH5v4rMGql-S1HOSek5SL0mWmpOlxg_3JRzzH5zT-NY-H2BiEZQybWKehSyIm3cQ3r5Q5v3M69FPBTCwGQhUQa1BlME6dGbqs84m6vs_Okn-F_M1lSY</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Shoaib Arif, Muhammad</creator><creator>Raza, Ali</creator><creator>Abodayeh, Kamaleldin</creator><creator>Rafiq, Muhammad</creator><creator>Bibi, Mairaj</creator><creator>Nazeer, Amna</creator><general>Tech Science Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20200101</creationdate><title>A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model</title><author>Shoaib Arif, Muhammad ; Raza, Ali ; Abodayeh, Kamaleldin ; Rafiq, Muhammad ; Bibi, Mairaj ; Nazeer, Amna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3591-ebc45c6b2290273a1bc5979ea020fdd24a69e5cbf0e357979a9f175c031ab6573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Convergence Analysis</topic><topic>Epidemics</topic><topic>Epidemiolocal Model</topic><topic>Stochastic Differential Equations</topic><topic>Stochastic models</topic><topic>Stochastic systems</topic><topic>Stochastic Techniques</topic><topic>Time dependence</topic><toplevel>online_resources</toplevel><creatorcontrib>Shoaib Arif, Muhammad</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Abodayeh, Kamaleldin</creatorcontrib><creatorcontrib>Rafiq, Muhammad</creatorcontrib><creatorcontrib>Bibi, Mairaj</creatorcontrib><creatorcontrib>Nazeer, Amna</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Computer modeling in engineering &amp; sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shoaib Arif, Muhammad</au><au>Raza, Ali</au><au>Abodayeh, Kamaleldin</au><au>Rafiq, Muhammad</au><au>Bibi, Mairaj</au><au>Nazeer, Amna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model</atitle><jtitle>Computer modeling in engineering &amp; sciences</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>124</volume><issue>2</issue><spage>477</spage><epage>491</epage><pages>477-491</pages><issn>1526-1492</issn><issn>1526-1506</issn><eissn>1526-1506</eissn><abstract>The essential features of the nonlinear stochastic models are positivity, dynamical consistency and boundedness. These features have a significant role in different fields of computational biology and many more. The aim of our paper, to achieve the comparison analysis of the stochastic susceptible, infected recovered epidemic model. The stochastic modelling is a realistic way to study the dynamics of compartmental modelling as compared to deterministic modelling. The effect of reproduction number has also observed in the stochastic susceptible, infected recovered epidemic model. For comparison analysis, we developed some explicit stochastic techniques, but they are the time-dependent techniques. The implicitly driven explicit technique has developed for the stochastic susceptible, infected recovered epidemic model. In the support, some theorems and graphical illustration has presented. Also, the time efficiency of this method makes it easy to find the solution of the stochastic system. The comparison with other techniques shows the efficacy and reliability of the designed technique.</abstract><cop>Henderson</cop><pub>Tech Science Press</pub><doi>10.32604/cmes.2020.011121</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1526-1492
ispartof Computer modeling in engineering & sciences, 2020-01, Vol.124 (2), p.477-491
issn 1526-1492
1526-1506
1526-1506
language eng
recordid cdi_crossref_primary_10_32604_cmes_2020_011121
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Tech Science Press
subjects Convergence Analysis
Epidemics
Epidemiolocal Model
Stochastic Differential Equations
Stochastic models
Stochastic systems
Stochastic Techniques
Time dependence
title A Numerical Efficient Technique for the Solution of Susceptible Infected Recovered Epidemic Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A09%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Numerical%20Efficient%20Technique%20for%20the%20Solution%20of%20Susceptible%20Infected%20Recovered%20Epidemic%20Model&rft.jtitle=Computer%20modeling%20in%20engineering%20&%20sciences&rft.au=Shoaib%20Arif,%20Muhammad&rft.date=2020-01-01&rft.volume=124&rft.issue=2&rft.spage=477&rft.epage=491&rft.pages=477-491&rft.issn=1526-1492&rft.eissn=1526-1506&rft_id=info:doi/10.32604/cmes.2020.011121&rft_dat=%3Cproquest_cross%3E2429477394%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429477394&rft_id=info:pmid/&rft_ingid=tsp/cmes/2020/00000124/00000002/art00005&rfr_iscdi=true