A Novel S-Box Generation Methodology Based on the Optimized GAN Model
Gespeichert in:
Veröffentlicht in: | Computers, materials & continua materials & continua, 2023-01, Vol.76 (2), p.1911-1927 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1927 |
---|---|
container_issue | 2 |
container_start_page | 1911 |
container_title | Computers, materials & continua |
container_volume | 76 |
creator | Zhang, Runlian Shu, Rui Wei, Yongzhuang Zhang, Hailong Wu, Xiaonian |
description | |
doi_str_mv | 10.32604/cmc.2023.041187 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_32604_cmc_2023_041187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_32604_cmc_2023_041187</sourcerecordid><originalsourceid>FETCH-LOGICAL-c238t-9c64bb7da05bc5f93ea5724ec364726595c6b372e15a3da088f96ae4a35afe173</originalsourceid><addsrcrecordid>eNotz8tOwzAUBFAvQKIU9iz9Awm2rx_JMq1KqNTHAlhbjnNDg5K6iiNE-XoCZTXSaDTSIeSBsxSEZvLR9z4VTEDKJOeZuSIzrqROhBD6htzG-MEYaMjZjKwKuguf2NGXZBG-aIlHHNzYhiPd4ngIdejC-5kuXMSaTuV4QLo_jW3ffk9FWezoNtTY3ZHrxnUR7_9zTt6eVq_L52SzL9fLYpN4AdmY5F7LqjK1Y6ryqskBnTJCogctjdAqV15XYARy5WBaZVmTa4fSgXINcgNzwi6_fggxDtjY09D2bjhbzuwf3U50-0u3Fzr8AOEWTaw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Novel S-Box Generation Methodology Based on the Optimized GAN Model</title><source>EZB Electronic Journals Library</source><creator>Zhang, Runlian ; Shu, Rui ; Wei, Yongzhuang ; Zhang, Hailong ; Wu, Xiaonian</creator><creatorcontrib>Zhang, Runlian ; Shu, Rui ; Wei, Yongzhuang ; Zhang, Hailong ; Wu, Xiaonian</creatorcontrib><identifier>ISSN: 1546-2226</identifier><identifier>DOI: 10.32604/cmc.2023.041187</identifier><language>eng</language><ispartof>Computers, materials & continua, 2023-01, Vol.76 (2), p.1911-1927</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Zhang, Runlian</creatorcontrib><creatorcontrib>Shu, Rui</creatorcontrib><creatorcontrib>Wei, Yongzhuang</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Wu, Xiaonian</creatorcontrib><title>A Novel S-Box Generation Methodology Based on the Optimized GAN Model</title><title>Computers, materials & continua</title><issn>1546-2226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotz8tOwzAUBFAvQKIU9iz9Awm2rx_JMq1KqNTHAlhbjnNDg5K6iiNE-XoCZTXSaDTSIeSBsxSEZvLR9z4VTEDKJOeZuSIzrqROhBD6htzG-MEYaMjZjKwKuguf2NGXZBG-aIlHHNzYhiPd4ngIdejC-5kuXMSaTuV4QLo_jW3ffk9FWezoNtTY3ZHrxnUR7_9zTt6eVq_L52SzL9fLYpN4AdmY5F7LqjK1Y6ryqskBnTJCogctjdAqV15XYARy5WBaZVmTa4fSgXINcgNzwi6_fggxDtjY09D2bjhbzuwf3U50-0u3Fzr8AOEWTaw</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Zhang, Runlian</creator><creator>Shu, Rui</creator><creator>Wei, Yongzhuang</creator><creator>Zhang, Hailong</creator><creator>Wu, Xiaonian</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230101</creationdate><title>A Novel S-Box Generation Methodology Based on the Optimized GAN Model</title><author>Zhang, Runlian ; Shu, Rui ; Wei, Yongzhuang ; Zhang, Hailong ; Wu, Xiaonian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c238t-9c64bb7da05bc5f93ea5724ec364726595c6b372e15a3da088f96ae4a35afe173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Runlian</creatorcontrib><creatorcontrib>Shu, Rui</creatorcontrib><creatorcontrib>Wei, Yongzhuang</creatorcontrib><creatorcontrib>Zhang, Hailong</creatorcontrib><creatorcontrib>Wu, Xiaonian</creatorcontrib><collection>CrossRef</collection><jtitle>Computers, materials & continua</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Runlian</au><au>Shu, Rui</au><au>Wei, Yongzhuang</au><au>Zhang, Hailong</au><au>Wu, Xiaonian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel S-Box Generation Methodology Based on the Optimized GAN Model</atitle><jtitle>Computers, materials & continua</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>76</volume><issue>2</issue><spage>1911</spage><epage>1927</epage><pages>1911-1927</pages><issn>1546-2226</issn><doi>10.32604/cmc.2023.041187</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2226 |
ispartof | Computers, materials & continua, 2023-01, Vol.76 (2), p.1911-1927 |
issn | 1546-2226 |
language | eng |
recordid | cdi_crossref_primary_10_32604_cmc_2023_041187 |
source | EZB Electronic Journals Library |
title | A Novel S-Box Generation Methodology Based on the Optimized GAN Model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A23%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20S-Box%20Generation%20Methodology%20Based%20on%20the%20Optimized%20GAN%20Model&rft.jtitle=Computers,%20materials%20&%20continua&rft.au=Zhang,%20Runlian&rft.date=2023-01-01&rft.volume=76&rft.issue=2&rft.spage=1911&rft.epage=1927&rft.pages=1911-1927&rft.issn=1546-2226&rft_id=info:doi/10.32604/cmc.2023.041187&rft_dat=%3Ccrossref%3E10_32604_cmc_2023_041187%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |