Dual rectangular fuzzy complex matrix equations: extended solution, algebraic solution, solution and their calculating1

In this paper, we focus on generalized fuzzy complex numbers and propose a straightforward matrix method to solve the dual rectangular fuzzy complex matrix equations C · Z ˜ + L ˜ = R · Z ˜ + W ˜ , in which C and R are crisp complex matrices and Z ˜ , L ˜ and M ˜ are fuzzy complex number matrices. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2024-04, p.1-21
Hauptverfasser: Gong, Zengtai, Zhang, Yuanyuan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue
container_start_page 1
container_title Journal of intelligent & fuzzy systems
container_volume
creator Gong, Zengtai
Zhang, Yuanyuan
description In this paper, we focus on generalized fuzzy complex numbers and propose a straightforward matrix method to solve the dual rectangular fuzzy complex matrix equations C · Z ˜ + L ˜ = R · Z ˜ + W ˜ , in which C and R are crisp complex matrices and Z ˜ , L ˜ and M ˜ are fuzzy complex number matrices. The existing methods for solving fuzzy complex matrix equations involve separately calculating the extended solution and the corresponding parameters of the real and imaginary parts, whereby we obtain the algebraic solution of the equations. By means of the interval arithmetic and embedding approach, the n × n dual rectangular fuzzy complex linear systems could be converted into 2n × 2n fuzzy linear systems, which are also equivalent to the 4n × 4n real linear systems. By directly solving the 4n × 4n real linear systems, the algebraic solutions can be obtained. The general dual rectangular fuzzy complex matrix equations and dual rectangular fuzzy complex linear systems are investigated by the generalized inverses of matrices. Finally, some examples are given to illustrate the effectiveness of method.
doi_str_mv 10.3233/JIFS-239305
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3233_JIFS_239305</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3233_JIFS_239305</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_3233_JIFS_2393053</originalsourceid><addsrcrecordid>eNqVj8tOwzAURC3USpTHih-4ewjYcZO0bIGqsIW9devcBCPHKX6ItF9PI0Bi29UcjUYaHcauBL-VuZR3L8-r1yyXS8mLEzYTi6rIFsuymhyYl_NM5PPylJ2F8MG5qIqcz9jXY0ILnnRE1yaLHpq03-9A993W0gAdRm8GoM-E0fQu3AMNkVxNNYTeprG7AbQtbTwa_a_7I0BXQ3wn40Gj1YeLaFwrLti0QRvo8jfP2fXq6e1hnWnfh-CpUVtvOvQ7Jbga3dTopn7c5HHrb8_1WHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Dual rectangular fuzzy complex matrix equations: extended solution, algebraic solution, solution and their calculating1</title><source>EBSCOhost Business Source Complete</source><creator>Gong, Zengtai ; Zhang, Yuanyuan</creator><creatorcontrib>Gong, Zengtai ; Zhang, Yuanyuan</creatorcontrib><description>In this paper, we focus on generalized fuzzy complex numbers and propose a straightforward matrix method to solve the dual rectangular fuzzy complex matrix equations C · Z ˜ + L ˜ = R · Z ˜ + W ˜ , in which C and R are crisp complex matrices and Z ˜ , L ˜ and M ˜ are fuzzy complex number matrices. The existing methods for solving fuzzy complex matrix equations involve separately calculating the extended solution and the corresponding parameters of the real and imaginary parts, whereby we obtain the algebraic solution of the equations. By means of the interval arithmetic and embedding approach, the n × n dual rectangular fuzzy complex linear systems could be converted into 2n × 2n fuzzy linear systems, which are also equivalent to the 4n × 4n real linear systems. By directly solving the 4n × 4n real linear systems, the algebraic solutions can be obtained. The general dual rectangular fuzzy complex matrix equations and dual rectangular fuzzy complex linear systems are investigated by the generalized inverses of matrices. Finally, some examples are given to illustrate the effectiveness of method.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-239305</identifier><language>eng</language><ispartof>Journal of intelligent &amp; fuzzy systems, 2024-04, p.1-21</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_3233_JIFS_2393053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gong, Zengtai</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><title>Dual rectangular fuzzy complex matrix equations: extended solution, algebraic solution, solution and their calculating1</title><title>Journal of intelligent &amp; fuzzy systems</title><description>In this paper, we focus on generalized fuzzy complex numbers and propose a straightforward matrix method to solve the dual rectangular fuzzy complex matrix equations C · Z ˜ + L ˜ = R · Z ˜ + W ˜ , in which C and R are crisp complex matrices and Z ˜ , L ˜ and M ˜ are fuzzy complex number matrices. The existing methods for solving fuzzy complex matrix equations involve separately calculating the extended solution and the corresponding parameters of the real and imaginary parts, whereby we obtain the algebraic solution of the equations. By means of the interval arithmetic and embedding approach, the n × n dual rectangular fuzzy complex linear systems could be converted into 2n × 2n fuzzy linear systems, which are also equivalent to the 4n × 4n real linear systems. By directly solving the 4n × 4n real linear systems, the algebraic solutions can be obtained. The general dual rectangular fuzzy complex matrix equations and dual rectangular fuzzy complex linear systems are investigated by the generalized inverses of matrices. Finally, some examples are given to illustrate the effectiveness of method.</description><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVj8tOwzAURC3USpTHih-4ewjYcZO0bIGqsIW9devcBCPHKX6ItF9PI0Bi29UcjUYaHcauBL-VuZR3L8-r1yyXS8mLEzYTi6rIFsuymhyYl_NM5PPylJ2F8MG5qIqcz9jXY0ILnnRE1yaLHpq03-9A993W0gAdRm8GoM-E0fQu3AMNkVxNNYTeprG7AbQtbTwa_a_7I0BXQ3wn40Gj1YeLaFwrLti0QRvo8jfP2fXq6e1hnWnfh-CpUVtvOvQ7Jbga3dTopn7c5HHrb8_1WHI</recordid><startdate>20240424</startdate><enddate>20240424</enddate><creator>Gong, Zengtai</creator><creator>Zhang, Yuanyuan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240424</creationdate><title>Dual rectangular fuzzy complex matrix equations: extended solution, algebraic solution, solution and their calculating1</title><author>Gong, Zengtai ; Zhang, Yuanyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_3233_JIFS_2393053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gong, Zengtai</creatorcontrib><creatorcontrib>Zhang, Yuanyuan</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gong, Zengtai</au><au>Zhang, Yuanyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dual rectangular fuzzy complex matrix equations: extended solution, algebraic solution, solution and their calculating1</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2024-04-24</date><risdate>2024</risdate><spage>1</spage><epage>21</epage><pages>1-21</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>In this paper, we focus on generalized fuzzy complex numbers and propose a straightforward matrix method to solve the dual rectangular fuzzy complex matrix equations C · Z ˜ + L ˜ = R · Z ˜ + W ˜ , in which C and R are crisp complex matrices and Z ˜ , L ˜ and M ˜ are fuzzy complex number matrices. The existing methods for solving fuzzy complex matrix equations involve separately calculating the extended solution and the corresponding parameters of the real and imaginary parts, whereby we obtain the algebraic solution of the equations. By means of the interval arithmetic and embedding approach, the n × n dual rectangular fuzzy complex linear systems could be converted into 2n × 2n fuzzy linear systems, which are also equivalent to the 4n × 4n real linear systems. By directly solving the 4n × 4n real linear systems, the algebraic solutions can be obtained. The general dual rectangular fuzzy complex matrix equations and dual rectangular fuzzy complex linear systems are investigated by the generalized inverses of matrices. Finally, some examples are given to illustrate the effectiveness of method.</abstract><doi>10.3233/JIFS-239305</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2024-04, p.1-21
issn 1064-1246
1875-8967
language eng
recordid cdi_crossref_primary_10_3233_JIFS_239305
source EBSCOhost Business Source Complete
title Dual rectangular fuzzy complex matrix equations: extended solution, algebraic solution, solution and their calculating1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T21%3A58%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dual%20rectangular%20fuzzy%20complex%20matrix%20equations:%20extended%20solution,%20algebraic%20solution,%20solution%20and%20their%20calculating1&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Gong,%20Zengtai&rft.date=2024-04-24&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-239305&rft_dat=%3Ccrossref%3E10_3233_JIFS_239305%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true