Research on energy saving algorithm of field animal monitoring based on cluster sensor network1

Monitoring the diversity of wild animals is a core part of the research and protection of wild animals. Due to the harsh outdoor environment, researchers cannot squat in the deep forest for a long time. Therefore, designing a sensor network system for wildlife monitoring is of great value to wildlif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2022-06, Vol.43 (1), p.295-307
Hauptverfasser: Luo, Huiyin, Jiang, Feng, Lin, Hongyu, Yao, Jian, Liu, Jiaxin, Jiang, Yu, Ren, Jia
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 307
container_issue 1
container_start_page 295
container_title Journal of intelligent & fuzzy systems
container_volume 43
creator Luo, Huiyin
Jiang, Feng
Lin, Hongyu
Yao, Jian
Liu, Jiaxin
Jiang, Yu
Ren, Jia
description Monitoring the diversity of wild animals is a core part of the research and protection of wild animals. Due to the harsh outdoor environment, researchers cannot squat in the deep forest for a long time. Therefore, designing a sensor network system for wildlife monitoring is of great value to wildlife research, protection, and management. When deploying a wildlife monitoring network in the wild environment, it is necessary to solve the problem of the effective use of energy. To this end, this paper proposes an energy-saving optimization method for node scheduling and a wake-up scheme based on a cultural genetic algorithm. This method achieves the purpose of energy saving by making redundant nodes fall asleep and waking up sleep nodes to repair the coverage blind area caused by dead nodes. Simulation results show that this method can activate fewer sensor nodes to monitor the required sensing area, and its performance is better than other known solutions.
doi_str_mv 10.3233/JIFS-212187
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3233_JIFS_212187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3233_JIFS_212187</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_3233_JIFS_2121873</originalsourceid><addsrcrecordid>eNqVj8FuwjAMhiM0JNjGiRfwHXUkKbTsPIHYjmP3KCtuCaQJsgsTb79U7AV2-f1L_mzpE2Kq5Euu83z-8b7ZZVpptSoHYpxyma1ei_IhdVksMqUXxUg8Mh-lVOVSy7Ewn8hoqTpADIABqbkB26sLDVjfRHLdoYVYQ-3Q78EG11oPbQyuS7sEfVvGfX9b-Qt3SMAYOBIE7H4indSzGNbWM07-5pOYbdZfb9usoshMWJszpZ90M0qa3sH0DubukP-P_gWXv063</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research on energy saving algorithm of field animal monitoring based on cluster sensor network1</title><source>EBSCOhost Business Source Complete</source><creator>Luo, Huiyin ; Jiang, Feng ; Lin, Hongyu ; Yao, Jian ; Liu, Jiaxin ; Jiang, Yu ; Ren, Jia</creator><creatorcontrib>Luo, Huiyin ; Jiang, Feng ; Lin, Hongyu ; Yao, Jian ; Liu, Jiaxin ; Jiang, Yu ; Ren, Jia</creatorcontrib><description>Monitoring the diversity of wild animals is a core part of the research and protection of wild animals. Due to the harsh outdoor environment, researchers cannot squat in the deep forest for a long time. Therefore, designing a sensor network system for wildlife monitoring is of great value to wildlife research, protection, and management. When deploying a wildlife monitoring network in the wild environment, it is necessary to solve the problem of the effective use of energy. To this end, this paper proposes an energy-saving optimization method for node scheduling and a wake-up scheme based on a cultural genetic algorithm. This method achieves the purpose of energy saving by making redundant nodes fall asleep and waking up sleep nodes to repair the coverage blind area caused by dead nodes. Simulation results show that this method can activate fewer sensor nodes to monitor the required sensing area, and its performance is better than other known solutions.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-212187</identifier><language>eng</language><ispartof>Journal of intelligent &amp; fuzzy systems, 2022-06, Vol.43 (1), p.295-307</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_3233_JIFS_2121873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Luo, Huiyin</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Lin, Hongyu</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Liu, Jiaxin</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><title>Research on energy saving algorithm of field animal monitoring based on cluster sensor network1</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Monitoring the diversity of wild animals is a core part of the research and protection of wild animals. Due to the harsh outdoor environment, researchers cannot squat in the deep forest for a long time. Therefore, designing a sensor network system for wildlife monitoring is of great value to wildlife research, protection, and management. When deploying a wildlife monitoring network in the wild environment, it is necessary to solve the problem of the effective use of energy. To this end, this paper proposes an energy-saving optimization method for node scheduling and a wake-up scheme based on a cultural genetic algorithm. This method achieves the purpose of energy saving by making redundant nodes fall asleep and waking up sleep nodes to repair the coverage blind area caused by dead nodes. Simulation results show that this method can activate fewer sensor nodes to monitor the required sensing area, and its performance is better than other known solutions.</description><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqVj8FuwjAMhiM0JNjGiRfwHXUkKbTsPIHYjmP3KCtuCaQJsgsTb79U7AV2-f1L_mzpE2Kq5Euu83z-8b7ZZVpptSoHYpxyma1ei_IhdVksMqUXxUg8Mh-lVOVSy7Ewn8hoqTpADIABqbkB26sLDVjfRHLdoYVYQ-3Q78EG11oPbQyuS7sEfVvGfX9b-Qt3SMAYOBIE7H4indSzGNbWM07-5pOYbdZfb9usoshMWJszpZ90M0qa3sH0DubukP-P_gWXv063</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Luo, Huiyin</creator><creator>Jiang, Feng</creator><creator>Lin, Hongyu</creator><creator>Yao, Jian</creator><creator>Liu, Jiaxin</creator><creator>Jiang, Yu</creator><creator>Ren, Jia</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220601</creationdate><title>Research on energy saving algorithm of field animal monitoring based on cluster sensor network1</title><author>Luo, Huiyin ; Jiang, Feng ; Lin, Hongyu ; Yao, Jian ; Liu, Jiaxin ; Jiang, Yu ; Ren, Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_3233_JIFS_2121873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Huiyin</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Lin, Hongyu</creatorcontrib><creatorcontrib>Yao, Jian</creatorcontrib><creatorcontrib>Liu, Jiaxin</creatorcontrib><creatorcontrib>Jiang, Yu</creatorcontrib><creatorcontrib>Ren, Jia</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Huiyin</au><au>Jiang, Feng</au><au>Lin, Hongyu</au><au>Yao, Jian</au><au>Liu, Jiaxin</au><au>Jiang, Yu</au><au>Ren, Jia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on energy saving algorithm of field animal monitoring based on cluster sensor network1</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>43</volume><issue>1</issue><spage>295</spage><epage>307</epage><pages>295-307</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Monitoring the diversity of wild animals is a core part of the research and protection of wild animals. Due to the harsh outdoor environment, researchers cannot squat in the deep forest for a long time. Therefore, designing a sensor network system for wildlife monitoring is of great value to wildlife research, protection, and management. When deploying a wildlife monitoring network in the wild environment, it is necessary to solve the problem of the effective use of energy. To this end, this paper proposes an energy-saving optimization method for node scheduling and a wake-up scheme based on a cultural genetic algorithm. This method achieves the purpose of energy saving by making redundant nodes fall asleep and waking up sleep nodes to repair the coverage blind area caused by dead nodes. Simulation results show that this method can activate fewer sensor nodes to monitor the required sensing area, and its performance is better than other known solutions.</abstract><doi>10.3233/JIFS-212187</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2022-06, Vol.43 (1), p.295-307
issn 1064-1246
1875-8967
language eng
recordid cdi_crossref_primary_10_3233_JIFS_212187
source EBSCOhost Business Source Complete
title Research on energy saving algorithm of field animal monitoring based on cluster sensor network1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T23%3A59%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20energy%20saving%20algorithm%20of%20field%20animal%20monitoring%20based%20on%20cluster%20sensor%20network1&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Luo,%20Huiyin&rft.date=2022-06-01&rft.volume=43&rft.issue=1&rft.spage=295&rft.epage=307&rft.pages=295-307&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-212187&rft_dat=%3Ccrossref%3E10_3233_JIFS_212187%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true