Long-distance running training system based on inertial sensor network

Long-distance running is an advantage of Chinese sports, but compared with the world level, there is still a big gap. Therefore, an advanced long-distance running training system is urgently needed to scientifically train our long-distance runners to change this situation. The purpose of this articl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-03, p.1-9
Hauptverfasser: Xiang, Yingjiao, Sun, Baishun, Wang, Zhiqin, Taher, Fatma
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9
container_issue
container_start_page 1
container_title Journal of intelligent & fuzzy systems
container_volume
creator Xiang, Yingjiao
Sun, Baishun
Wang, Zhiqin
Taher, Fatma
description Long-distance running is an advantage of Chinese sports, but compared with the world level, there is still a big gap. Therefore, an advanced long-distance running training system is urgently needed to scientifically train our long-distance runners to change this situation. The purpose of this article is to study the long-distance running training system under inertial sensor network. According to the actual situation at home and abroad, a human gait analysis system based on inertial sensors is designed. Gait parameters are transformed into clinical medicine through related algorithms and software platforms. Experimental results show that although the step length calculated by the gait analysis system is different from the actual step length, the error value is small, kept below 3 cm, and the error percentage is less than 2%, which meets the accuracy requirements of gait analysis. This fully proves the feasibility of the zero-speed correction method in gait analysis.
doi_str_mv 10.3233/JIFS-189832
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3233_JIFS_189832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3233_JIFS_189832</sourcerecordid><originalsourceid>FETCH-LOGICAL-c782-a18a711077973c89e0438bd11df8531d2f034c9a19a9de3db405f919a17f53fe3</originalsourceid><addsrcrecordid>eNotkLFOwzAURS0EEqUw8QPekcHPL4ntEVUUiiIx0D1yYrsytA7yC0L9e1rKdM9dznAYuwV5jwrx4XW1fBdgrEF1xmZgdC2MbfT5gWVTCVBVc8muiD6kBF0rOWPLdswb4RNNLg-Bl--cU97wqbj0B7SnKex47yh4PmaecihTcltOIdNYeA7Tz1g-r9lFdFsKN_87Z-vl03rxItq359XisRWDNko4ME4DSK2txsHYICs0vQfw0dQIXkWJ1WAdWGd9QN9Xso728EDHGmPAObs7aYcyEpUQu6-Sdq7sO5DdsUB3LNCdCuAvi2JOpg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Long-distance running training system based on inertial sensor network</title><source>EBSCOhost Business Source Complete</source><creator>Xiang, Yingjiao ; Sun, Baishun ; Wang, Zhiqin ; Taher, Fatma</creator><creatorcontrib>Xiang, Yingjiao ; Sun, Baishun ; Wang, Zhiqin ; Taher, Fatma</creatorcontrib><description>Long-distance running is an advantage of Chinese sports, but compared with the world level, there is still a big gap. Therefore, an advanced long-distance running training system is urgently needed to scientifically train our long-distance runners to change this situation. The purpose of this article is to study the long-distance running training system under inertial sensor network. According to the actual situation at home and abroad, a human gait analysis system based on inertial sensors is designed. Gait parameters are transformed into clinical medicine through related algorithms and software platforms. Experimental results show that although the step length calculated by the gait analysis system is different from the actual step length, the error value is small, kept below 3 cm, and the error percentage is less than 2%, which meets the accuracy requirements of gait analysis. This fully proves the feasibility of the zero-speed correction method in gait analysis.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-189832</identifier><language>eng</language><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-03, p.1-9</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c782-a18a711077973c89e0438bd11df8531d2f034c9a19a9de3db405f919a17f53fe3</citedby><cites>FETCH-LOGICAL-c782-a18a711077973c89e0438bd11df8531d2f034c9a19a9de3db405f919a17f53fe3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiang, Yingjiao</creatorcontrib><creatorcontrib>Sun, Baishun</creatorcontrib><creatorcontrib>Wang, Zhiqin</creatorcontrib><creatorcontrib>Taher, Fatma</creatorcontrib><title>Long-distance running training system based on inertial sensor network</title><title>Journal of intelligent &amp; fuzzy systems</title><description>Long-distance running is an advantage of Chinese sports, but compared with the world level, there is still a big gap. Therefore, an advanced long-distance running training system is urgently needed to scientifically train our long-distance runners to change this situation. The purpose of this article is to study the long-distance running training system under inertial sensor network. According to the actual situation at home and abroad, a human gait analysis system based on inertial sensors is designed. Gait parameters are transformed into clinical medicine through related algorithms and software platforms. Experimental results show that although the step length calculated by the gait analysis system is different from the actual step length, the error value is small, kept below 3 cm, and the error percentage is less than 2%, which meets the accuracy requirements of gait analysis. This fully proves the feasibility of the zero-speed correction method in gait analysis.</description><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkLFOwzAURS0EEqUw8QPekcHPL4ntEVUUiiIx0D1yYrsytA7yC0L9e1rKdM9dznAYuwV5jwrx4XW1fBdgrEF1xmZgdC2MbfT5gWVTCVBVc8muiD6kBF0rOWPLdswb4RNNLg-Bl--cU97wqbj0B7SnKex47yh4PmaecihTcltOIdNYeA7Tz1g-r9lFdFsKN_87Z-vl03rxItq359XisRWDNko4ME4DSK2txsHYICs0vQfw0dQIXkWJ1WAdWGd9QN9Xso728EDHGmPAObs7aYcyEpUQu6-Sdq7sO5DdsUB3LNCdCuAvi2JOpg</recordid><startdate>20210320</startdate><enddate>20210320</enddate><creator>Xiang, Yingjiao</creator><creator>Sun, Baishun</creator><creator>Wang, Zhiqin</creator><creator>Taher, Fatma</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210320</creationdate><title>Long-distance running training system based on inertial sensor network</title><author>Xiang, Yingjiao ; Sun, Baishun ; Wang, Zhiqin ; Taher, Fatma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c782-a18a711077973c89e0438bd11df8531d2f034c9a19a9de3db405f919a17f53fe3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Yingjiao</creatorcontrib><creatorcontrib>Sun, Baishun</creatorcontrib><creatorcontrib>Wang, Zhiqin</creatorcontrib><creatorcontrib>Taher, Fatma</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Yingjiao</au><au>Sun, Baishun</au><au>Wang, Zhiqin</au><au>Taher, Fatma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-distance running training system based on inertial sensor network</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-03-20</date><risdate>2021</risdate><spage>1</spage><epage>9</epage><pages>1-9</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>Long-distance running is an advantage of Chinese sports, but compared with the world level, there is still a big gap. Therefore, an advanced long-distance running training system is urgently needed to scientifically train our long-distance runners to change this situation. The purpose of this article is to study the long-distance running training system under inertial sensor network. According to the actual situation at home and abroad, a human gait analysis system based on inertial sensors is designed. Gait parameters are transformed into clinical medicine through related algorithms and software platforms. Experimental results show that although the step length calculated by the gait analysis system is different from the actual step length, the error value is small, kept below 3 cm, and the error percentage is less than 2%, which meets the accuracy requirements of gait analysis. This fully proves the feasibility of the zero-speed correction method in gait analysis.</abstract><doi>10.3233/JIFS-189832</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-03, p.1-9
issn 1064-1246
1875-8967
language eng
recordid cdi_crossref_primary_10_3233_JIFS_189832
source EBSCOhost Business Source Complete
title Long-distance running training system based on inertial sensor network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A55%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-distance%20running%20training%20system%20based%20on%20inertial%20sensor%20network&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Xiang,%20Yingjiao&rft.date=2021-03-20&rft.spage=1&rft.epage=9&rft.pages=1-9&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-189832&rft_dat=%3Ccrossref%3E10_3233_JIFS_189832%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true