An improved algorithm for mining media content application patterns based on QPop increasing disk time domain segmentation and upgrading1

The intelligent scheduling algorithm for hierarchical data migration is a key issue in data management. Mass media content platforms and the discovery of content object usage patterns is the basic schedule of data migration. We add QPop, the dimensionality reduction result of media content usage log...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2021-02, Vol.40 (2), p.3177-3184
Hauptverfasser: Xindi, Yang, Huanran, Du
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3184
container_issue 2
container_start_page 3177
container_title Journal of intelligent & fuzzy systems
container_volume 40
creator Xindi, Yang
Huanran, Du
description The intelligent scheduling algorithm for hierarchical data migration is a key issue in data management. Mass media content platforms and the discovery of content object usage patterns is the basic schedule of data migration. We add QPop, the dimensionality reduction result of media content usage logs, as content objects for discovering usage patterns. On this basis, a clustering algorithm QPop is proposed to increase the time segmentation, thereby improving the mining performance. We hired the standard C-means algorithm as the clustering core and used segmentation to conduct an experimental mining process to collect the ted QPop increments in practical applications. The results show that the improved algorithm has good robustness in cluster cohesion and other indicators, slightly better than the basic model.
doi_str_mv 10.3233/JIFS-189356
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3233_JIFS_189356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3233_JIFS_189356</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_3233_JIFS_1893563</originalsourceid><addsrcrecordid>eNqVj8tKBDEQRYMoOD5W_kDtpTXpTD9mKeLguFJ0H8pOui3tPEii4Cf416YZf8BVXYp7LhzGLgS_krWU1w-77XMl-o1s2gO2En3XVP2m7Q5L5u26EvW6PWYnKb1zLrqm5iv2c-OAbIj-y2jAefKR8puF0Uew5MhNYI0mhMG7bFwGDGGmATN5BwFzNtEleMVU6PJ5evQByA3RYFpYTekDMlkD2lskB8lMtszseXQaPsMUUZeuOGNHI87JnP_dU3a5vXu5va-G6FOKZlQhksX4rQRXi61abNXeVv6v_QtpEl6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An improved algorithm for mining media content application patterns based on QPop increasing disk time domain segmentation and upgrading1</title><source>EBSCOhost Business Source Complete</source><creator>Xindi, Yang ; Huanran, Du</creator><contributor>Elhoseny, M. ; Yuan, X.</contributor><creatorcontrib>Xindi, Yang ; Huanran, Du ; Elhoseny, M. ; Yuan, X.</creatorcontrib><description>The intelligent scheduling algorithm for hierarchical data migration is a key issue in data management. Mass media content platforms and the discovery of content object usage patterns is the basic schedule of data migration. We add QPop, the dimensionality reduction result of media content usage logs, as content objects for discovering usage patterns. On this basis, a clustering algorithm QPop is proposed to increase the time segmentation, thereby improving the mining performance. We hired the standard C-means algorithm as the clustering core and used segmentation to conduct an experimental mining process to collect the ted QPop increments in practical applications. The results show that the improved algorithm has good robustness in cluster cohesion and other indicators, slightly better than the basic model.</description><identifier>ISSN: 1064-1246</identifier><identifier>EISSN: 1875-8967</identifier><identifier>DOI: 10.3233/JIFS-189356</identifier><language>eng</language><ispartof>Journal of intelligent &amp; fuzzy systems, 2021-02, Vol.40 (2), p.3177-3184</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_3233_JIFS_1893563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><contributor>Elhoseny, M.</contributor><contributor>Yuan, X.</contributor><creatorcontrib>Xindi, Yang</creatorcontrib><creatorcontrib>Huanran, Du</creatorcontrib><title>An improved algorithm for mining media content application patterns based on QPop increasing disk time domain segmentation and upgrading1</title><title>Journal of intelligent &amp; fuzzy systems</title><description>The intelligent scheduling algorithm for hierarchical data migration is a key issue in data management. Mass media content platforms and the discovery of content object usage patterns is the basic schedule of data migration. We add QPop, the dimensionality reduction result of media content usage logs, as content objects for discovering usage patterns. On this basis, a clustering algorithm QPop is proposed to increase the time segmentation, thereby improving the mining performance. We hired the standard C-means algorithm as the clustering core and used segmentation to conduct an experimental mining process to collect the ted QPop increments in practical applications. The results show that the improved algorithm has good robustness in cluster cohesion and other indicators, slightly better than the basic model.</description><issn>1064-1246</issn><issn>1875-8967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqVj8tKBDEQRYMoOD5W_kDtpTXpTD9mKeLguFJ0H8pOui3tPEii4Cf416YZf8BVXYp7LhzGLgS_krWU1w-77XMl-o1s2gO2En3XVP2m7Q5L5u26EvW6PWYnKb1zLrqm5iv2c-OAbIj-y2jAefKR8puF0Uew5MhNYI0mhMG7bFwGDGGmATN5BwFzNtEleMVU6PJ5evQByA3RYFpYTekDMlkD2lskB8lMtszseXQaPsMUUZeuOGNHI87JnP_dU3a5vXu5va-G6FOKZlQhksX4rQRXi61abNXeVv6v_QtpEl6k</recordid><startdate>20210202</startdate><enddate>20210202</enddate><creator>Xindi, Yang</creator><creator>Huanran, Du</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210202</creationdate><title>An improved algorithm for mining media content application patterns based on QPop increasing disk time domain segmentation and upgrading1</title><author>Xindi, Yang ; Huanran, Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_3233_JIFS_1893563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xindi, Yang</creatorcontrib><creatorcontrib>Huanran, Du</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xindi, Yang</au><au>Huanran, Du</au><au>Elhoseny, M.</au><au>Yuan, X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved algorithm for mining media content application patterns based on QPop increasing disk time domain segmentation and upgrading1</atitle><jtitle>Journal of intelligent &amp; fuzzy systems</jtitle><date>2021-02-02</date><risdate>2021</risdate><volume>40</volume><issue>2</issue><spage>3177</spage><epage>3184</epage><pages>3177-3184</pages><issn>1064-1246</issn><eissn>1875-8967</eissn><abstract>The intelligent scheduling algorithm for hierarchical data migration is a key issue in data management. Mass media content platforms and the discovery of content object usage patterns is the basic schedule of data migration. We add QPop, the dimensionality reduction result of media content usage logs, as content objects for discovering usage patterns. On this basis, a clustering algorithm QPop is proposed to increase the time segmentation, thereby improving the mining performance. We hired the standard C-means algorithm as the clustering core and used segmentation to conduct an experimental mining process to collect the ted QPop increments in practical applications. The results show that the improved algorithm has good robustness in cluster cohesion and other indicators, slightly better than the basic model.</abstract><doi>10.3233/JIFS-189356</doi></addata></record>
fulltext fulltext
identifier ISSN: 1064-1246
ispartof Journal of intelligent & fuzzy systems, 2021-02, Vol.40 (2), p.3177-3184
issn 1064-1246
1875-8967
language eng
recordid cdi_crossref_primary_10_3233_JIFS_189356
source EBSCOhost Business Source Complete
title An improved algorithm for mining media content application patterns based on QPop increasing disk time domain segmentation and upgrading1
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A45%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20algorithm%20for%20mining%20media%20content%20application%20patterns%20based%20on%20QPop%20increasing%20disk%20time%20domain%20segmentation%20and%20upgrading1&rft.jtitle=Journal%20of%20intelligent%20&%20fuzzy%20systems&rft.au=Xindi,%20Yang&rft.date=2021-02-02&rft.volume=40&rft.issue=2&rft.spage=3177&rft.epage=3184&rft.pages=3177-3184&rft.issn=1064-1246&rft.eissn=1875-8967&rft_id=info:doi/10.3233/JIFS-189356&rft_dat=%3Ccrossref%3E10_3233_JIFS_189356%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true