The climate signal recorded in the oxygen-isotope, accumulation and major-ion time series from the Eclipse ice core, YukonTerritory, Canada

The high accumulation rate, nearly complete preservation and detailed chronology of the Eclipse ice core, Yukon Territory, Canada, are well suited for comparison of the glaciochemical recordwith instrumental time series of temperature, precipitation and sea-level pressure. Results of cross-correlati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of glaciology 2002, Vol.35, p.416-422
Hauptverfasser: Wake, Cameron P., Yalcin, Kaplan, Gundestrup, Niels S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high accumulation rate, nearly complete preservation and detailed chronology of the Eclipse ice core, Yukon Territory, Canada, are well suited for comparison of the glaciochemical recordwith instrumental time series of temperature, precipitation and sea-level pressure. Results of cross-correlation analysis of instrumental temperature records with the Eclipse δ18O time series reveal a significant positive relationship between summertime δ18O at Eclipse and summer (April–September) temperatures in northwestern North America. the results indicate that the Eclipse δ18O time series provides a better proxy for regional temperature than does the δ18O time series from the Mount Logan ice-core record for which only negative correlations were found. Winter accumulation at Eclipse is significantly correlated with several sites in Alaska, but not with any sites in the Yukon. the δ18O, accumulation and glaciochemical time series also display significant correlations with the Northern Hemisphere sea-level pressure dataset, especially between wintertime sulfate and nitrate concentrations at Eclipse and the intensity of the wintertime Siberian high and Aleutian and Icelandic lows. These results suggest that year-to-year variability in the deposition of pollutants at Eclipse can be linked to changes in atmospheric circulation, while long-term trends can be explained by changes in source strength.
ISSN:0260-3055
1727-5644
DOI:10.3189/172756402781817266