Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam
This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, eleva...
Gespeichert in:
Veröffentlicht in: | Исследования Земли из космоса 2024-07 (1), p.3-15 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 1 |
container_start_page | 3 |
container_title | Исследования Земли из космоса |
container_volume | |
creator | Doan, Thi Nam Phuong Trinh, Le Hung Zablotskii, V. R. Nguyen, Van Trung Tran, Xuan Truong Pham, Thi Thanh Hoa Le, Thi Thu Ha Le, Van Phu |
description | This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires. |
doi_str_mv | 10.31857/S0205961424010012 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31857_S0205961424010012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31857_S0205961424010012</sourcerecordid><originalsourceid>FETCH-crossref_primary_10_31857_S02059614240100123</originalsourceid><addsrcrecordid>eNqdj71Ow0AQhK8AiQjyAlT7AAT2zvmlsyJMUoBQHGiti7NJVuC1ub1ECk8PjujoaGY0n2aKMeba4m1ix4PRXY4OB5Oh7bs-WkTrzkynRb2WXZiuKq8QXTJy44nrmK-sDqQRMg4EC9Z3SFVJtSKJ4GUNT75pWLbwqq0uqKojQU5yim3hcZ7Dksqd8Oee9B5SmHr9qcT9-ggs8LzdEaQCL6E-sJR0A29MUXx1Zc43_kOp--uXxmUPy-msV4ZaNdCmaAJXPhwLi8XpXPHnXPKv0Tc3BlgM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Doan, Thi Nam Phuong ; Trinh, Le Hung ; Zablotskii, V. R. ; Nguyen, Van Trung ; Tran, Xuan Truong ; Pham, Thi Thanh Hoa ; Le, Thi Thu Ha ; Le, Van Phu</creator><creatorcontrib>Doan, Thi Nam Phuong ; Trinh, Le Hung ; Zablotskii, V. R. ; Nguyen, Van Trung ; Tran, Xuan Truong ; Pham, Thi Thanh Hoa ; Le, Thi Thu Ha ; Le, Van Phu</creatorcontrib><description>This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires.</description><identifier>ISSN: 0205-9614</identifier><identifier>DOI: 10.31857/S0205961424010012</identifier><language>eng</language><ispartof>Исследования Земли из космоса, 2024-07 (1), p.3-15</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-crossref_primary_10_31857_S02059614240100123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Doan, Thi Nam Phuong</creatorcontrib><creatorcontrib>Trinh, Le Hung</creatorcontrib><creatorcontrib>Zablotskii, V. R.</creatorcontrib><creatorcontrib>Nguyen, Van Trung</creatorcontrib><creatorcontrib>Tran, Xuan Truong</creatorcontrib><creatorcontrib>Pham, Thi Thanh Hoa</creatorcontrib><creatorcontrib>Le, Thi Thu Ha</creatorcontrib><creatorcontrib>Le, Van Phu</creatorcontrib><title>Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam</title><title>Исследования Земли из космоса</title><description>This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires.</description><issn>0205-9614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqdj71Ow0AQhK8AiQjyAlT7AAT2zvmlsyJMUoBQHGiti7NJVuC1ub1ECk8PjujoaGY0n2aKMeba4m1ix4PRXY4OB5Oh7bs-WkTrzkynRb2WXZiuKq8QXTJy44nrmK-sDqQRMg4EC9Z3SFVJtSKJ4GUNT75pWLbwqq0uqKojQU5yim3hcZ7Dksqd8Oee9B5SmHr9qcT9-ggs8LzdEaQCL6E-sJR0A29MUXx1Zc43_kOp--uXxmUPy-msV4ZaNdCmaAJXPhwLi8XpXPHnXPKv0Tc3BlgM</recordid><startdate>20240725</startdate><enddate>20240725</enddate><creator>Doan, Thi Nam Phuong</creator><creator>Trinh, Le Hung</creator><creator>Zablotskii, V. R.</creator><creator>Nguyen, Van Trung</creator><creator>Tran, Xuan Truong</creator><creator>Pham, Thi Thanh Hoa</creator><creator>Le, Thi Thu Ha</creator><creator>Le, Van Phu</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240725</creationdate><title>Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam</title><author>Doan, Thi Nam Phuong ; Trinh, Le Hung ; Zablotskii, V. R. ; Nguyen, Van Trung ; Tran, Xuan Truong ; Pham, Thi Thanh Hoa ; Le, Thi Thu Ha ; Le, Van Phu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-crossref_primary_10_31857_S02059614240100123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doan, Thi Nam Phuong</creatorcontrib><creatorcontrib>Trinh, Le Hung</creatorcontrib><creatorcontrib>Zablotskii, V. R.</creatorcontrib><creatorcontrib>Nguyen, Van Trung</creatorcontrib><creatorcontrib>Tran, Xuan Truong</creatorcontrib><creatorcontrib>Pham, Thi Thanh Hoa</creatorcontrib><creatorcontrib>Le, Thi Thu Ha</creatorcontrib><creatorcontrib>Le, Van Phu</creatorcontrib><collection>CrossRef</collection><jtitle>Исследования Земли из космоса</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doan, Thi Nam Phuong</au><au>Trinh, Le Hung</au><au>Zablotskii, V. R.</au><au>Nguyen, Van Trung</au><au>Tran, Xuan Truong</au><au>Pham, Thi Thanh Hoa</au><au>Le, Thi Thu Ha</au><au>Le, Van Phu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam</atitle><jtitle>Исследования Земли из космоса</jtitle><date>2024-07-25</date><risdate>2024</risdate><issue>1</issue><spage>3</spage><epage>15</epage><pages>3-15</pages><issn>0205-9614</issn><abstract>This paper presents the results of modeling the risk of forest fires in the west of Nghe An Province (north-central Vietnam) using remote sensing and GIS data. The nine factors influencing the risk of forest fires, including vegetation cover (NDVI vegetation index), surface evapotranspiration, elevation (DEM), slope (slope), aspect, wind speed, ground surface temperature, average monthly precipitation and population density are used to build a forest fire risk mapping model based on machine learning methods, including Random Forest (RF), Suppor Vector Machine (SVM), and Classification and Regression Trees (CART). Various parameters are tested in the RF, SVM, CART algorithms to select the algorithm with the highest accuracy in forest fire risk prediction. The obtained results show that the RF algorithm with the value of the numberOfTrees parameter equal to 100 has the highest accuracy in predicting the risk of forest fires in the study area, expressed through the location of the distribution of forest fire points, as well as the AUC value on the ROC curve. The results obtained in the study can be effectively used for monitoring and early warning of forest fire danger in settlements, helping to reduce damage from forest fires.</abstract><doi>10.31857/S0205961424010012</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0205-9614 |
ispartof | Исследования Земли из космоса, 2024-07 (1), p.3-15 |
issn | 0205-9614 |
language | eng |
recordid | cdi_crossref_primary_10_31857_S0205961424010012 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Forest Fire Risk Assessment and Mapping Using Remote Sensing and GIS Techniques: A Case Study in Nghe An Province, Vietnam |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Forest%20Fire%20Risk%20Assessment%20and%20Mapping%20Using%20Remote%20Sensing%20and%20GIS%20Techniques:%20A%20Case%20Study%20in%20Nghe%20An%20Province,%20Vietnam&rft.jtitle=%D0%98%D1%81%D1%81%D0%BB%D0%B5%D0%B4%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D1%8F%20%D0%97%D0%B5%D0%BC%D0%BB%D0%B8%20%D0%B8%D0%B7%20%D0%BA%D0%BE%D1%81%D0%BC%D0%BE%D1%81%D0%B0&rft.au=Doan,%20Thi%20Nam%20Phuong&rft.date=2024-07-25&rft.issue=1&rft.spage=3&rft.epage=15&rft.pages=3-15&rft.issn=0205-9614&rft_id=info:doi/10.31857/S0205961424010012&rft_dat=%3Ccrossref%3E10_31857_S0205961424010012%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |