Some results on pseudosymmetric normal paracontact metric manifolds

TIn this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2022-12, Vol.71 (4), p.1044-1057
Hauptverfasser: ATÇEKEN, Mehmet, MERT, Tuğba
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1057
container_issue 4
container_start_page 1044
container_title Communications Series A1 Mathematics & Statistics
container_volume 71
creator ATÇEKEN, Mehmet
MERT, Tuğba
description TIn this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is of constant sectional curvature. We also obtain that a pseudosymmetric normal paracontact metric manifold is an $\eta$-Einstein manifold. Finally, we support our topic with an example.
doi_str_mv 10.31801/cfsuasmas.937043
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31801_cfsuasmas_937043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31801_cfsuasmas_937043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c170t-1c52cd0a9bb3b242738521e79af7558d56fd709851508fafa5cacc09f4acc3963</originalsourceid><addsrcrecordid>eNo9z81KxDAUhuEsFBxHL8BdbqDjSU8zaZZS_IOBWajrcpomUGmaktMu5u4VZ3D1Lj744BHiQcEOVQ3q0QVeiSPxzqKBCq_ERiFgoa1VN-KW-RsAsarURjQfKXqZPa_jwjJNcma_9olPMfolD05OKUca5UyZXJoWcou8LJGmIaSx5ztxHWhkf3_pVny9PH82b8Xh-PrePB0KpwwshXK6dD2Q7Trsyqo0WOtSeWMpGK3rXu9Db8DWWmmoAwXSjpwDG6rfoN3jVqjzr8uJOfvQznmIlE-tgvZP3v7L27McfwAYz1Kd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Some results on pseudosymmetric normal paracontact metric manifolds</title><source>Alma/SFX Local Collection</source><creator>ATÇEKEN, Mehmet ; MERT, Tuğba</creator><creatorcontrib>ATÇEKEN, Mehmet ; MERT, Tuğba</creatorcontrib><description>TIn this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is of constant sectional curvature. We also obtain that a pseudosymmetric normal paracontact metric manifold is an $\eta$-Einstein manifold. Finally, we support our topic with an example.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.31801/cfsuasmas.937043</identifier><language>eng</language><ispartof>Communications Series A1 Mathematics &amp; Statistics, 2022-12, Vol.71 (4), p.1044-1057</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c170t-1c52cd0a9bb3b242738521e79af7558d56fd709851508fafa5cacc09f4acc3963</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27929,27930</link.rule.ids></links><search><creatorcontrib>ATÇEKEN, Mehmet</creatorcontrib><creatorcontrib>MERT, Tuğba</creatorcontrib><title>Some results on pseudosymmetric normal paracontact metric manifolds</title><title>Communications Series A1 Mathematics &amp; Statistics</title><description>TIn this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is of constant sectional curvature. We also obtain that a pseudosymmetric normal paracontact metric manifold is an $\eta$-Einstein manifold. Finally, we support our topic with an example.</description><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9z81KxDAUhuEsFBxHL8BdbqDjSU8zaZZS_IOBWajrcpomUGmaktMu5u4VZ3D1Lj744BHiQcEOVQ3q0QVeiSPxzqKBCq_ERiFgoa1VN-KW-RsAsarURjQfKXqZPa_jwjJNcma_9olPMfolD05OKUca5UyZXJoWcou8LJGmIaSx5ztxHWhkf3_pVny9PH82b8Xh-PrePB0KpwwshXK6dD2Q7Trsyqo0WOtSeWMpGK3rXu9Db8DWWmmoAwXSjpwDG6rfoN3jVqjzr8uJOfvQznmIlE-tgvZP3v7L27McfwAYz1Kd</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>ATÇEKEN, Mehmet</creator><creator>MERT, Tuğba</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221230</creationdate><title>Some results on pseudosymmetric normal paracontact metric manifolds</title><author>ATÇEKEN, Mehmet ; MERT, Tuğba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c170t-1c52cd0a9bb3b242738521e79af7558d56fd709851508fafa5cacc09f4acc3963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ATÇEKEN, Mehmet</creatorcontrib><creatorcontrib>MERT, Tuğba</creatorcontrib><collection>CrossRef</collection><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ATÇEKEN, Mehmet</au><au>MERT, Tuğba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some results on pseudosymmetric normal paracontact metric manifolds</atitle><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle><date>2022-12-30</date><risdate>2022</risdate><volume>71</volume><issue>4</issue><spage>1044</spage><epage>1057</epage><pages>1044-1057</pages><issn>1303-5991</issn><abstract>TIn this article, the M-projective and Weyl curvature tensors on a normal paracontact metric manifold are discussed. For normal paracontact metric manifolds, pseudosymmetric cases are investigated and some interesting results are obtained. We show that a semisymmetric normal paracontact manifold is of constant sectional curvature. We also obtain that a pseudosymmetric normal paracontact metric manifold is an $\eta$-Einstein manifold. Finally, we support our topic with an example.</abstract><doi>10.31801/cfsuasmas.937043</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1303-5991
ispartof Communications Series A1 Mathematics & Statistics, 2022-12, Vol.71 (4), p.1044-1057
issn 1303-5991
language eng
recordid cdi_crossref_primary_10_31801_cfsuasmas_937043
source Alma/SFX Local Collection
title Some results on pseudosymmetric normal paracontact metric manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T02%3A29%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20results%20on%20pseudosymmetric%20normal%20paracontact%20metric%20manifolds&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=AT%C3%87EKEN,%20Mehmet&rft.date=2022-12-30&rft.volume=71&rft.issue=4&rft.spage=1044&rft.epage=1057&rft.pages=1044-1057&rft.issn=1303-5991&rft_id=info:doi/10.31801/cfsuasmas.937043&rft_dat=%3Ccrossref%3E10_31801_cfsuasmas_937043%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true