Trajectory curves and surfaces: A new perspective via projective geometric algebra
The aim of this work is to define quaternion curves and surfaces and their conjugates via operators in Euclidean projective geometric algebra (EPGA). In this space, quaternions were obtained by the geometric product of vector fields. New vector fields, which we call trajectory curves and surfaces, w...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2024-01, Vol.73 (1), p.64-75 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The aim of this work is to define quaternion curves and surfaces and their conjugates via operators in Euclidean projective geometric algebra (EPGA). In this space, quaternions were obtained by the geometric product of vector fields. New vector fields, which we call trajectory curves and surfaces, were obtained by using this new quaternion operator. Moreover, dual quaternion curves are determined by a similar method and then their generated motion is studied. Illustrative examples are given. |
---|---|
ISSN: | 1303-5991 |
DOI: | 10.31801/cfsuasmas.1170867 |