Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron

In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2023-03, Vol.72 (1), p.229-239
Hauptverfasser: ASLAN, Nisa, SALTAN, Mustafa, DEMİR, Bünyamin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 229
container_title Communications Series A1 Mathematics & Statistics
container_volume 72
creator ASLAN, Nisa
SALTAN, Mustafa
DEMİR, Bünyamin
description In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.
doi_str_mv 10.31801/cfsuasmas.1126635
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31801_cfsuasmas_1126635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31801_cfsuasmas_1126635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</originalsourceid><addsrcrecordid>eNo9kMtOwzAURL0AiVL4AVb-gRRfOzHJEkW8pEosAIlddOOHamji4Osu8ve0tGIxGmlmNIvD2A2IlYJawK3xtEMakFYAUmtVnbEFKKGKqmnggl0SfQmhVFnCgn22cZgwBYojj55THBy384hDMLjlNFN2A_F9mTeO_-xiDm7MnCY07rA_pG_BpSmM9B14djnhxtkUxyt27nFL7vrkS_bx-PDePhfr16eX9n5dGCkhF7W0VqIWwvlG971qVO3RShDa2Bqw8kJqs5fSqE11V2Jla-wrrUAIg1irJZPHX5MiUXK-m1IYMM0diO6PR_fPozvxUL9oYVn5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</title><source>Alma/SFX Local Collection</source><creator>ASLAN, Nisa ; SALTAN, Mustafa ; DEMİR, Bünyamin</creator><creatorcontrib>ASLAN, Nisa ; SALTAN, Mustafa ; DEMİR, Bünyamin</creatorcontrib><description>In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.31801/cfsuasmas.1126635</identifier><language>eng</language><ispartof>Communications Series A1 Mathematics &amp; Statistics, 2023-03, Vol.72 (1), p.229-239</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</citedby><cites>FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</cites><orcidid>0000-0002-3252-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>ASLAN, Nisa</creatorcontrib><creatorcontrib>SALTAN, Mustafa</creatorcontrib><creatorcontrib>DEMİR, Bünyamin</creatorcontrib><title>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</title><title>Communications Series A1 Mathematics &amp; Statistics</title><description>In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.</description><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURL0AiVL4AVb-gRRfOzHJEkW8pEosAIlddOOHamji4Osu8ve0tGIxGmlmNIvD2A2IlYJawK3xtEMakFYAUmtVnbEFKKGKqmnggl0SfQmhVFnCgn22cZgwBYojj55THBy384hDMLjlNFN2A_F9mTeO_-xiDm7MnCY07rA_pG_BpSmM9B14djnhxtkUxyt27nFL7vrkS_bx-PDePhfr16eX9n5dGCkhF7W0VqIWwvlG971qVO3RShDa2Bqw8kJqs5fSqE11V2Jla-wrrUAIg1irJZPHX5MiUXK-m1IYMM0diO6PR_fPozvxUL9oYVn5</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>ASLAN, Nisa</creator><creator>SALTAN, Mustafa</creator><creator>DEMİR, Bünyamin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3252-3012</orcidid></search><sort><creationdate>20230330</creationdate><title>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</title><author>ASLAN, Nisa ; SALTAN, Mustafa ; DEMİR, Bünyamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASLAN, Nisa</creatorcontrib><creatorcontrib>SALTAN, Mustafa</creatorcontrib><creatorcontrib>DEMİR, Bünyamin</creatorcontrib><collection>CrossRef</collection><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASLAN, Nisa</au><au>SALTAN, Mustafa</au><au>DEMİR, Bünyamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</atitle><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle><date>2023-03-30</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>229</spage><epage>239</epage><pages>229-239</pages><issn>1303-5991</issn><abstract>In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.</abstract><doi>10.31801/cfsuasmas.1126635</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3252-3012</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1303-5991
ispartof Communications Series A1 Mathematics & Statistics, 2023-03, Vol.72 (1), p.229-239
issn 1303-5991
language eng
recordid cdi_crossref_primary_10_31801_cfsuasmas_1126635
source Alma/SFX Local Collection
title Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20some%20dynamical%20systems%20on%20the%20quotient%20space%20of%20the%20Sierpinski%20tetrahedron&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=ASLAN,%20Nisa&rft.date=2023-03-30&rft.volume=72&rft.issue=1&rft.spage=229&rft.epage=239&rft.pages=229-239&rft.issn=1303-5991&rft_id=info:doi/10.31801/cfsuasmas.1126635&rft_dat=%3Ccrossref%3E10_31801_cfsuasmas_1126635%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true