Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron
In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2023-03, Vol.72 (1), p.229-239 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 1 |
container_start_page | 229 |
container_title | Communications Series A1 Mathematics & Statistics |
container_volume | 72 |
creator | ASLAN, Nisa SALTAN, Mustafa DEMİR, Bünyamin |
description | In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent. |
doi_str_mv | 10.31801/cfsuasmas.1126635 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31801_cfsuasmas_1126635</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31801_cfsuasmas_1126635</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</originalsourceid><addsrcrecordid>eNo9kMtOwzAURL0AiVL4AVb-gRRfOzHJEkW8pEosAIlddOOHamji4Osu8ve0tGIxGmlmNIvD2A2IlYJawK3xtEMakFYAUmtVnbEFKKGKqmnggl0SfQmhVFnCgn22cZgwBYojj55THBy384hDMLjlNFN2A_F9mTeO_-xiDm7MnCY07rA_pG_BpSmM9B14djnhxtkUxyt27nFL7vrkS_bx-PDePhfr16eX9n5dGCkhF7W0VqIWwvlG971qVO3RShDa2Bqw8kJqs5fSqE11V2Jla-wrrUAIg1irJZPHX5MiUXK-m1IYMM0diO6PR_fPozvxUL9oYVn5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</title><source>Alma/SFX Local Collection</source><creator>ASLAN, Nisa ; SALTAN, Mustafa ; DEMİR, Bünyamin</creator><creatorcontrib>ASLAN, Nisa ; SALTAN, Mustafa ; DEMİR, Bünyamin</creatorcontrib><description>In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.31801/cfsuasmas.1126635</identifier><language>eng</language><ispartof>Communications Series A1 Mathematics & Statistics, 2023-03, Vol.72 (1), p.229-239</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</citedby><cites>FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</cites><orcidid>0000-0002-3252-3012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>ASLAN, Nisa</creatorcontrib><creatorcontrib>SALTAN, Mustafa</creatorcontrib><creatorcontrib>DEMİR, Bünyamin</creatorcontrib><title>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</title><title>Communications Series A1 Mathematics & Statistics</title><description>In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.</description><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAURL0AiVL4AVb-gRRfOzHJEkW8pEosAIlddOOHamji4Osu8ve0tGIxGmlmNIvD2A2IlYJawK3xtEMakFYAUmtVnbEFKKGKqmnggl0SfQmhVFnCgn22cZgwBYojj55THBy384hDMLjlNFN2A_F9mTeO_-xiDm7MnCY07rA_pG_BpSmM9B14djnhxtkUxyt27nFL7vrkS_bx-PDePhfr16eX9n5dGCkhF7W0VqIWwvlG971qVO3RShDa2Bqw8kJqs5fSqE11V2Jla-wrrUAIg1irJZPHX5MiUXK-m1IYMM0diO6PR_fPozvxUL9oYVn5</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>ASLAN, Nisa</creator><creator>SALTAN, Mustafa</creator><creator>DEMİR, Bünyamin</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3252-3012</orcidid></search><sort><creationdate>20230330</creationdate><title>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</title><author>ASLAN, Nisa ; SALTAN, Mustafa ; DEMİR, Bünyamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-82dd2a600ef96bb3938fad2106cd81a5f026c02636a6c574a5d8ab563100caa83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>ASLAN, Nisa</creatorcontrib><creatorcontrib>SALTAN, Mustafa</creatorcontrib><creatorcontrib>DEMİR, Bünyamin</creatorcontrib><collection>CrossRef</collection><jtitle>Communications Series A1 Mathematics & Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>ASLAN, Nisa</au><au>SALTAN, Mustafa</au><au>DEMİR, Bünyamin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron</atitle><jtitle>Communications Series A1 Mathematics & Statistics</jtitle><date>2023-03-30</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>229</spage><epage>239</epage><pages>229-239</pages><issn>1303-5991</issn><abstract>In this paper, it is aimed to construct two different dynamical systems on the Sierpinski tetrahedron. To this end, we consider the dynamical systems on a quotient space of $\{ 0,1,2,3 \}^{\mathbb{N}}$ by using the code representations of the points on the Sierpinski tetrahedron. Finally, we compare the periodic points to investigate topological conjugacy of these dynamical systems and we conclude that they are not topologically equivalent.</abstract><doi>10.31801/cfsuasmas.1126635</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3252-3012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1303-5991 |
ispartof | Communications Series A1 Mathematics & Statistics, 2023-03, Vol.72 (1), p.229-239 |
issn | 1303-5991 |
language | eng |
recordid | cdi_crossref_primary_10_31801_cfsuasmas_1126635 |
source | Alma/SFX Local Collection |
title | Comparison of some dynamical systems on the quotient space of the Sierpinski tetrahedron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20some%20dynamical%20systems%20on%20the%20quotient%20space%20of%20the%20Sierpinski%20tetrahedron&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=ASLAN,%20Nisa&rft.date=2023-03-30&rft.volume=72&rft.issue=1&rft.spage=229&rft.epage=239&rft.pages=229-239&rft.issn=1303-5991&rft_id=info:doi/10.31801/cfsuasmas.1126635&rft_dat=%3Ccrossref%3E10_31801_cfsuasmas_1126635%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |