q$-Difference Operator on $L_q^{2}( 0, + \infty )
In this research, the minimal and maximal operators defined by $q$- difference expression are given in the Hilbert space $L_q^{2}( 0, + \infty )$. The existence problem of a $q^{-1}$-normal extension for the minimal operator is mentioned. In addition, the sets of the minimal operator spectrum and th...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2023-03, Vol.72 (1), p.247-258 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 258 |
---|---|
container_issue | 1 |
container_start_page | 247 |
container_title | Communications Series A1 Mathematics & Statistics |
container_volume | 72 |
creator | SERTBAŞ, Meltem SARAL, Coşkun |
description | In this research, the minimal and maximal operators defined by $q$- difference expression are given in the Hilbert space $L_q^{2}( 0, + \infty )$. The existence problem of a $q^{-1}$-normal extension for the minimal operator is mentioned. In addition, the sets of the minimal operator spectrum and the maximal operator spectrum are examined. |
doi_str_mv | 10.31801/cfsuasmas.1121701 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31801_cfsuasmas_1121701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31801_cfsuasmas_1121701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c871-e8a5185908a5975ae8003a7ee0443d92825ee3ae6a267106f67d7375d11352143</originalsourceid><addsrcrecordid>eNo9zz1PwzAUhWEPIFEKf4DJQwcQuNzrG8fOiMpHK0Xq0hFhWcm1FEST1i5DhfjvVFAxvds5eoS4QpgSOsD7JubPkNchTxE1WsATMUICUqaq8Eyc5_wOQFQUOBK4najHLkZO3DcslxtOYTckOfRyUvvt25f-vpZwJ2_la9fH3V7eXIjTGD4yXx47Fqvnp9Vsrurly2L2UKvGWVTsgkFnKji0siawO1wGywxFQW2lnTbMFLgMurQIZSxta8maFpGMxoLGQv_NNmnIOXH0m9StQ9p7BP_r9P9Of3TSD8KYRpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>q$-Difference Operator on $L_q^{2}( 0, + \infty )</title><source>Alma/SFX Local Collection</source><creator>SERTBAŞ, Meltem ; SARAL, Coşkun</creator><creatorcontrib>SERTBAŞ, Meltem ; SARAL, Coşkun</creatorcontrib><description>In this research, the minimal and maximal operators defined by $q$- difference expression are given in the Hilbert space $L_q^{2}( 0, + \infty )$. The existence problem of a $q^{-1}$-normal extension for the minimal operator is mentioned. In addition, the sets of the minimal operator spectrum and the maximal operator spectrum are examined.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.31801/cfsuasmas.1121701</identifier><language>eng</language><ispartof>Communications Series A1 Mathematics & Statistics, 2023-03, Vol.72 (1), p.247-258</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c871-e8a5185908a5975ae8003a7ee0443d92825ee3ae6a267106f67d7375d11352143</cites><orcidid>0000-0001-9606-951X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>SERTBAŞ, Meltem</creatorcontrib><creatorcontrib>SARAL, Coşkun</creatorcontrib><title>q$-Difference Operator on $L_q^{2}( 0, + \infty )</title><title>Communications Series A1 Mathematics & Statistics</title><description>In this research, the minimal and maximal operators defined by $q$- difference expression are given in the Hilbert space $L_q^{2}( 0, + \infty )$. The existence problem of a $q^{-1}$-normal extension for the minimal operator is mentioned. In addition, the sets of the minimal operator spectrum and the maximal operator spectrum are examined.</description><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9zz1PwzAUhWEPIFEKf4DJQwcQuNzrG8fOiMpHK0Xq0hFhWcm1FEST1i5DhfjvVFAxvds5eoS4QpgSOsD7JubPkNchTxE1WsATMUICUqaq8Eyc5_wOQFQUOBK4najHLkZO3DcslxtOYTckOfRyUvvt25f-vpZwJ2_la9fH3V7eXIjTGD4yXx47Fqvnp9Vsrurly2L2UKvGWVTsgkFnKji0siawO1wGywxFQW2lnTbMFLgMurQIZSxta8maFpGMxoLGQv_NNmnIOXH0m9StQ9p7BP_r9P9Of3TSD8KYRpo</recordid><startdate>20230330</startdate><enddate>20230330</enddate><creator>SERTBAŞ, Meltem</creator><creator>SARAL, Coşkun</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9606-951X</orcidid></search><sort><creationdate>20230330</creationdate><title>q$-Difference Operator on $L_q^{2}( 0, + \infty )</title><author>SERTBAŞ, Meltem ; SARAL, Coşkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c871-e8a5185908a5975ae8003a7ee0443d92825ee3ae6a267106f67d7375d11352143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SERTBAŞ, Meltem</creatorcontrib><creatorcontrib>SARAL, Coşkun</creatorcontrib><collection>CrossRef</collection><jtitle>Communications Series A1 Mathematics & Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SERTBAŞ, Meltem</au><au>SARAL, Coşkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>q$-Difference Operator on $L_q^{2}( 0, + \infty )</atitle><jtitle>Communications Series A1 Mathematics & Statistics</jtitle><date>2023-03-30</date><risdate>2023</risdate><volume>72</volume><issue>1</issue><spage>247</spage><epage>258</epage><pages>247-258</pages><issn>1303-5991</issn><abstract>In this research, the minimal and maximal operators defined by $q$- difference expression are given in the Hilbert space $L_q^{2}( 0, + \infty )$. The existence problem of a $q^{-1}$-normal extension for the minimal operator is mentioned. In addition, the sets of the minimal operator spectrum and the maximal operator spectrum are examined.</abstract><doi>10.31801/cfsuasmas.1121701</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9606-951X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1303-5991 |
ispartof | Communications Series A1 Mathematics & Statistics, 2023-03, Vol.72 (1), p.247-258 |
issn | 1303-5991 |
language | eng |
recordid | cdi_crossref_primary_10_31801_cfsuasmas_1121701 |
source | Alma/SFX Local Collection |
title | q$-Difference Operator on $L_q^{2}( 0, + \infty ) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T14%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=q$-Difference%20Operator%20on%20$L_q%5E%7B2%7D(%200,%20+%20%5Cinfty%20)&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=SERTBA%C5%9E,%20Meltem&rft.date=2023-03-30&rft.volume=72&rft.issue=1&rft.spage=247&rft.epage=258&rft.pages=247-258&rft.issn=1303-5991&rft_id=info:doi/10.31801/cfsuasmas.1121701&rft_dat=%3Ccrossref%3E10_31801_cfsuasmas_1121701%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |