Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers
The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization techn...
Gespeichert in:
Veröffentlicht in: | Communications Series A1 Mathematics & Statistics 2022-12, Vol.71 (4), p.954-967 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 967 |
---|---|
container_issue | 4 |
container_start_page | 954 |
container_title | Communications Series A1 Mathematics & Statistics |
container_volume | 71 |
creator | DURMAZ, Muhammet Enes ÇAKIR, Musa AMİRALİ, Gabil |
description | The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique. |
doi_str_mv | 10.31801/cfsuasmas.1072728 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31801_cfsuasmas_1072728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31801_cfsuasmas_1072728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRb0AiVL4AVb-gRTbkzTJElW8pEqwgHXk2ONilNhhnBT690SlYjXSnaMr3cPYjRQrkJWQt8alSadep5UUpSpVdcYWEgRkRV3LC3aZ0qcQAHkuF-z7VZPucUTiU_AuUs8TmhhsFsnOYZh6JG90x_UwUPzxvR59DHwm-fiB3IcRdxQz651DwjD6GcWv6Uil-b2P3d6HHW_jFKymA-_0ASldsXOnu4TXp7tk7w_3b5unbPvy-Ly522ZGKTlmTlltde7MuhSotGtLdHpd50bJwmGl2lbWIEvA1lSQW2nB1AAItgJbFKWDJVN_vYZiSoSuGWjeQIdGiuaoq_nX1Zx0wS9m5mga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</title><source>Alma/SFX Local Collection</source><creator>DURMAZ, Muhammet Enes ; ÇAKIR, Musa ; AMİRALİ, Gabil</creator><creatorcontrib>DURMAZ, Muhammet Enes ; ÇAKIR, Musa ; AMİRALİ, Gabil</creatorcontrib><description>The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.31801/cfsuasmas.1072728</identifier><language>eng</language><ispartof>Communications Series A1 Mathematics & Statistics, 2022-12, Vol.71 (4), p.954-967</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</citedby><cites>FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>DURMAZ, Muhammet Enes</creatorcontrib><creatorcontrib>ÇAKIR, Musa</creatorcontrib><creatorcontrib>AMİRALİ, Gabil</creatorcontrib><title>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</title><title>Communications Series A1 Mathematics & Statistics</title><description>The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.</description><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRb0AiVL4AVb-gRTbkzTJElW8pEqwgHXk2ONilNhhnBT690SlYjXSnaMr3cPYjRQrkJWQt8alSadep5UUpSpVdcYWEgRkRV3LC3aZ0qcQAHkuF-z7VZPucUTiU_AuUs8TmhhsFsnOYZh6JG90x_UwUPzxvR59DHwm-fiB3IcRdxQz651DwjD6GcWv6Uil-b2P3d6HHW_jFKymA-_0ASldsXOnu4TXp7tk7w_3b5unbPvy-Ly522ZGKTlmTlltde7MuhSotGtLdHpd50bJwmGl2lbWIEvA1lSQW2nB1AAItgJbFKWDJVN_vYZiSoSuGWjeQIdGiuaoq_nX1Zx0wS9m5mga</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>DURMAZ, Muhammet Enes</creator><creator>ÇAKIR, Musa</creator><creator>AMİRALİ, Gabil</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221230</creationdate><title>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</title><author>DURMAZ, Muhammet Enes ; ÇAKIR, Musa ; AMİRALİ, Gabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DURMAZ, Muhammet Enes</creatorcontrib><creatorcontrib>ÇAKIR, Musa</creatorcontrib><creatorcontrib>AMİRALİ, Gabil</creatorcontrib><collection>CrossRef</collection><jtitle>Communications Series A1 Mathematics & Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DURMAZ, Muhammet Enes</au><au>ÇAKIR, Musa</au><au>AMİRALİ, Gabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</atitle><jtitle>Communications Series A1 Mathematics & Statistics</jtitle><date>2022-12-30</date><risdate>2022</risdate><volume>71</volume><issue>4</issue><spage>954</spage><epage>967</epage><pages>954-967</pages><issn>1303-5991</issn><abstract>The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.</abstract><doi>10.31801/cfsuasmas.1072728</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1303-5991 |
ispartof | Communications Series A1 Mathematics & Statistics, 2022-12, Vol.71 (4), p.954-967 |
issn | 1303-5991 |
language | eng |
recordid | cdi_crossref_primary_10_31801_cfsuasmas_1072728 |
source | Alma/SFX Local Collection |
title | Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20uniform%20second-order%20numerical%20approximation%20for%20the%20integro-differential%20equations%20involving%20boundary%20layers&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=DURMAZ,%20Muhammet%20Enes&rft.date=2022-12-30&rft.volume=71&rft.issue=4&rft.spage=954&rft.epage=967&rft.pages=954-967&rft.issn=1303-5991&rft_id=info:doi/10.31801/cfsuasmas.1072728&rft_dat=%3Ccrossref%3E10_31801_cfsuasmas_1072728%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |