Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers

The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization techn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications Series A1 Mathematics & Statistics 2022-12, Vol.71 (4), p.954-967
Hauptverfasser: DURMAZ, Muhammet Enes, ÇAKIR, Musa, AMİRALİ, Gabil
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 967
container_issue 4
container_start_page 954
container_title Communications Series A1 Mathematics & Statistics
container_volume 71
creator DURMAZ, Muhammet Enes
ÇAKIR, Musa
AMİRALİ, Gabil
description The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.
doi_str_mv 10.31801/cfsuasmas.1072728
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31801_cfsuasmas_1072728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31801_cfsuasmas_1072728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRb0AiVL4AVb-gRTbkzTJElW8pEqwgHXk2ONilNhhnBT690SlYjXSnaMr3cPYjRQrkJWQt8alSadep5UUpSpVdcYWEgRkRV3LC3aZ0qcQAHkuF-z7VZPucUTiU_AuUs8TmhhsFsnOYZh6JG90x_UwUPzxvR59DHwm-fiB3IcRdxQz651DwjD6GcWv6Uil-b2P3d6HHW_jFKymA-_0ASldsXOnu4TXp7tk7w_3b5unbPvy-Ly522ZGKTlmTlltde7MuhSotGtLdHpd50bJwmGl2lbWIEvA1lSQW2nB1AAItgJbFKWDJVN_vYZiSoSuGWjeQIdGiuaoq_nX1Zx0wS9m5mga</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</title><source>Alma/SFX Local Collection</source><creator>DURMAZ, Muhammet Enes ; ÇAKIR, Musa ; AMİRALİ, Gabil</creator><creatorcontrib>DURMAZ, Muhammet Enes ; ÇAKIR, Musa ; AMİRALİ, Gabil</creatorcontrib><description>The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.</description><identifier>ISSN: 1303-5991</identifier><identifier>DOI: 10.31801/cfsuasmas.1072728</identifier><language>eng</language><ispartof>Communications Series A1 Mathematics &amp; Statistics, 2022-12, Vol.71 (4), p.954-967</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</citedby><cites>FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>DURMAZ, Muhammet Enes</creatorcontrib><creatorcontrib>ÇAKIR, Musa</creatorcontrib><creatorcontrib>AMİRALİ, Gabil</creatorcontrib><title>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</title><title>Communications Series A1 Mathematics &amp; Statistics</title><description>The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.</description><issn>1303-5991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRb0AiVL4AVb-gRTbkzTJElW8pEqwgHXk2ONilNhhnBT690SlYjXSnaMr3cPYjRQrkJWQt8alSadep5UUpSpVdcYWEgRkRV3LC3aZ0qcQAHkuF-z7VZPucUTiU_AuUs8TmhhsFsnOYZh6JG90x_UwUPzxvR59DHwm-fiB3IcRdxQz651DwjD6GcWv6Uil-b2P3d6HHW_jFKymA-_0ASldsXOnu4TXp7tk7w_3b5unbPvy-Ly522ZGKTlmTlltde7MuhSotGtLdHpd50bJwmGl2lbWIEvA1lSQW2nB1AAItgJbFKWDJVN_vYZiSoSuGWjeQIdGiuaoq_nX1Zx0wS9m5mga</recordid><startdate>20221230</startdate><enddate>20221230</enddate><creator>DURMAZ, Muhammet Enes</creator><creator>ÇAKIR, Musa</creator><creator>AMİRALİ, Gabil</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221230</creationdate><title>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</title><author>DURMAZ, Muhammet Enes ; ÇAKIR, Musa ; AMİRALİ, Gabil</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-f2dada4fc670e2afb7efa694c215fe82bb193173ebc834d1d3c933e3d83d557f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>DURMAZ, Muhammet Enes</creatorcontrib><creatorcontrib>ÇAKIR, Musa</creatorcontrib><creatorcontrib>AMİRALİ, Gabil</creatorcontrib><collection>CrossRef</collection><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>DURMAZ, Muhammet Enes</au><au>ÇAKIR, Musa</au><au>AMİRALİ, Gabil</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers</atitle><jtitle>Communications Series A1 Mathematics &amp; Statistics</jtitle><date>2022-12-30</date><risdate>2022</risdate><volume>71</volume><issue>4</issue><spage>954</spage><epage>967</epage><pages>954-967</pages><issn>1303-5991</issn><abstract>The work handles a Fredholm integro-differential equation involving boundary layers. A fitted second-order difference scheme has been created on a uniform mesh utilizing interpolating quadrature rules and exponential basis functions. The stability and convergence of the proposed discretization technique are analyzed and one example is solved to display the advantages of the presented technique.</abstract><doi>10.31801/cfsuasmas.1072728</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1303-5991
ispartof Communications Series A1 Mathematics & Statistics, 2022-12, Vol.71 (4), p.954-967
issn 1303-5991
language eng
recordid cdi_crossref_primary_10_31801_cfsuasmas_1072728
source Alma/SFX Local Collection
title Parameter uniform second-order numerical approximation for the integro-differential equations involving boundary layers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A40%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parameter%20uniform%20second-order%20numerical%20approximation%20for%20the%20integro-differential%20equations%20involving%20boundary%20layers&rft.jtitle=Communications%20Series%20A1%20Mathematics%20&%20Statistics&rft.au=DURMAZ,%20Muhammet%20Enes&rft.date=2022-12-30&rft.volume=71&rft.issue=4&rft.spage=954&rft.epage=967&rft.pages=954-967&rft.issn=1303-5991&rft_id=info:doi/10.31801/cfsuasmas.1072728&rft_dat=%3Ccrossref%3E10_31801_cfsuasmas_1072728%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true