Lantana trifolia ACTIVATED CARBON FOR REMOVAL OF 2-PHENOXYETHANOIC ACID: NEURAL NETWORK OPTIMIZATION APPROACH

This study uses a low-cost Lantana trifolia-activated carbon and an artificial neural network (ANN) to predict wastewater having 2-phenoxyethanoic acid adsorption. To forecast 2-phenoxyethanoic acid elimination efficiency, MATLAB uses a three-layer feed-forward neural network, a Multilayer Perceptro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rasāyan journal of chemistry 2024-04, Vol.17 (2), p.363-371
Hauptverfasser: Ilavenil, K. K., V. Senthilkumar, R. Pichailakshmi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study uses a low-cost Lantana trifolia-activated carbon and an artificial neural network (ANN) to predict wastewater having 2-phenoxyethanoic acid adsorption. To forecast 2-phenoxyethanoic acid elimination efficiency, MATLAB uses a three-layer feed-forward neural network, a Multilayer Perceptron (MLP), with backpropagation. The neural network is trained with three input parameters: 2-phenoxyethanoic acid concentration, adsorbent amount, and contact duration. Root mean square error and linear regression estimate the removal effectiveness of 2- phenoxyethanoic acid. The findings reveal that the generated ANN models for 2-phenoxyethanoic acid adsorption accurately match empirical data on pollutant removal efficacy. This suggests that low-cost Lantana trifolia activated carbon may be used to estimate 2-phenoxyethanoic acid absorption using the neural network technique.
ISSN:0974-1496
0974-1496
DOI:10.31788/RJC.2024.1728543