THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION

Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Rasāyan journal of chemistry 2023, Vol.16 (1), p.38-47
Hauptverfasser: L. Efiyanti, Saputra, N.A., Indrawan, D.A., I. Winarni, B. Pranoto, N. Hastuti, Z. Fadhlulloh, Y. Rahayuningsih, S. Wibowo, S. Darmawan, Yuniawati, Gusmailina, S. Komarayati, D. Hendra, G. Pari
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 47
container_issue 1
container_start_page 38
container_title Rasāyan journal of chemistry
container_volume 16
creator L. Efiyanti
Saputra, N.A.
Indrawan, D.A.
I. Winarni
B. Pranoto
N. Hastuti
Z. Fadhlulloh
Y. Rahayuningsih
S. Wibowo
S. Darmawan
Yuniawati
Gusmailina
S. Komarayati
D. Hendra
G. Pari
description Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.
doi_str_mv 10.31788/RJC.2023.1618126
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31788_RJC_2023_1618126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31788_RJC_2023_1618126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1556-52716c37e33a05e7a056b5356bf9b2a2dd254ba420f5bb04aa4f1aaba09f1caf3</originalsourceid><addsrcrecordid>eNpNkE1OwzAUhC0EElXpAdj5Agn-ieNk6aRJa5TElZMKdWXZaSyBQKBkxe0xpQtmMTNPeprFB8AjRjHFPMue9HMZE0RojFOcYZLegBXKeRLhJE9v__V7sFmWNxQUjjzjK_Ay7CvYVr06KK2OPSyk6mUjSwFLMYjm1A-w1qqFotuqbgcL0RZKwaYSNayVhlupq3KIDietwq_soa5EOUjVPYA7b9-XaXPNNTjW1VDuo0btwnoTjZixNGKE43SkfKLUIjbxYKljNJjPHbHkfCYscTYhyDPnUGJt4rG1zqLc49F6ugb4b3ecP5dlnrz5ml8_7PxtMDIXOCbAMb9wzBUO_QFy4k_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>L. Efiyanti ; Saputra, N.A. ; Indrawan, D.A. ; I. Winarni ; B. Pranoto ; N. Hastuti ; Z. Fadhlulloh ; Y. Rahayuningsih ; S. Wibowo ; S. Darmawan ; Yuniawati ; Gusmailina ; S. Komarayati ; D. Hendra ; G. Pari</creator><creatorcontrib>L. Efiyanti ; Saputra, N.A. ; Indrawan, D.A. ; I. Winarni ; B. Pranoto ; N. Hastuti ; Z. Fadhlulloh ; Y. Rahayuningsih ; S. Wibowo ; S. Darmawan ; Yuniawati ; Gusmailina ; S. Komarayati ; D. Hendra ; G. Pari</creatorcontrib><description>Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.</description><identifier>ISSN: 0974-1496</identifier><identifier>EISSN: 0974-1496</identifier><identifier>DOI: 10.31788/RJC.2023.1618126</identifier><language>eng</language><ispartof>Rasāyan journal of chemistry, 2023, Vol.16 (1), p.38-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>L. Efiyanti</creatorcontrib><creatorcontrib>Saputra, N.A.</creatorcontrib><creatorcontrib>Indrawan, D.A.</creatorcontrib><creatorcontrib>I. Winarni</creatorcontrib><creatorcontrib>B. Pranoto</creatorcontrib><creatorcontrib>N. Hastuti</creatorcontrib><creatorcontrib>Z. Fadhlulloh</creatorcontrib><creatorcontrib>Y. Rahayuningsih</creatorcontrib><creatorcontrib>S. Wibowo</creatorcontrib><creatorcontrib>S. Darmawan</creatorcontrib><creatorcontrib>Yuniawati</creatorcontrib><creatorcontrib>Gusmailina</creatorcontrib><creatorcontrib>S. Komarayati</creatorcontrib><creatorcontrib>D. Hendra</creatorcontrib><creatorcontrib>G. Pari</creatorcontrib><title>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</title><title>Rasāyan journal of chemistry</title><description>Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.</description><issn>0974-1496</issn><issn>0974-1496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAUhC0EElXpAdj5Agn-ieNk6aRJa5TElZMKdWXZaSyBQKBkxe0xpQtmMTNPeprFB8AjRjHFPMue9HMZE0RojFOcYZLegBXKeRLhJE9v__V7sFmWNxQUjjzjK_Ay7CvYVr06KK2OPSyk6mUjSwFLMYjm1A-w1qqFotuqbgcL0RZKwaYSNayVhlupq3KIDietwq_soa5EOUjVPYA7b9-XaXPNNTjW1VDuo0btwnoTjZixNGKE43SkfKLUIjbxYKljNJjPHbHkfCYscTYhyDPnUGJt4rG1zqLc49F6ugb4b3ecP5dlnrz5ml8_7PxtMDIXOCbAMb9wzBUO_QFy4k_r</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>L. Efiyanti</creator><creator>Saputra, N.A.</creator><creator>Indrawan, D.A.</creator><creator>I. Winarni</creator><creator>B. Pranoto</creator><creator>N. Hastuti</creator><creator>Z. Fadhlulloh</creator><creator>Y. Rahayuningsih</creator><creator>S. Wibowo</creator><creator>S. Darmawan</creator><creator>Yuniawati</creator><creator>Gusmailina</creator><creator>S. Komarayati</creator><creator>D. Hendra</creator><creator>G. Pari</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</title><author>L. Efiyanti ; Saputra, N.A. ; Indrawan, D.A. ; I. Winarni ; B. Pranoto ; N. Hastuti ; Z. Fadhlulloh ; Y. Rahayuningsih ; S. Wibowo ; S. Darmawan ; Yuniawati ; Gusmailina ; S. Komarayati ; D. Hendra ; G. Pari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1556-52716c37e33a05e7a056b5356bf9b2a2dd254ba420f5bb04aa4f1aaba09f1caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>L. Efiyanti</creatorcontrib><creatorcontrib>Saputra, N.A.</creatorcontrib><creatorcontrib>Indrawan, D.A.</creatorcontrib><creatorcontrib>I. Winarni</creatorcontrib><creatorcontrib>B. Pranoto</creatorcontrib><creatorcontrib>N. Hastuti</creatorcontrib><creatorcontrib>Z. Fadhlulloh</creatorcontrib><creatorcontrib>Y. Rahayuningsih</creatorcontrib><creatorcontrib>S. Wibowo</creatorcontrib><creatorcontrib>S. Darmawan</creatorcontrib><creatorcontrib>Yuniawati</creatorcontrib><creatorcontrib>Gusmailina</creatorcontrib><creatorcontrib>S. Komarayati</creatorcontrib><creatorcontrib>D. Hendra</creatorcontrib><creatorcontrib>G. Pari</creatorcontrib><collection>CrossRef</collection><jtitle>Rasāyan journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>L. Efiyanti</au><au>Saputra, N.A.</au><au>Indrawan, D.A.</au><au>I. Winarni</au><au>B. Pranoto</au><au>N. Hastuti</au><au>Z. Fadhlulloh</au><au>Y. Rahayuningsih</au><au>S. Wibowo</au><au>S. Darmawan</au><au>Yuniawati</au><au>Gusmailina</au><au>S. Komarayati</au><au>D. Hendra</au><au>G. Pari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</atitle><jtitle>Rasāyan journal of chemistry</jtitle><date>2023</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>38</spage><epage>47</epage><pages>38-47</pages><issn>0974-1496</issn><eissn>0974-1496</eissn><abstract>Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.</abstract><doi>10.31788/RJC.2023.1618126</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0974-1496
ispartof Rasāyan journal of chemistry, 2023, Vol.16 (1), p.38-47
issn 0974-1496
0974-1496
language eng
recordid cdi_crossref_primary_10_31788_RJC_2023_1618126
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
title THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20MESOPOROUS%20BIOSILICA%20CATALYST%20FROM%20ANDONG%20BAMBOO%20LEAF%20FOR%20DIRECT-PYROLYSIS%20REACTION&rft.jtitle=Ras%C4%81yan%20journal%20of%20chemistry&rft.au=L.%20Efiyanti&rft.date=2023&rft.volume=16&rft.issue=1&rft.spage=38&rft.epage=47&rft.pages=38-47&rft.issn=0974-1496&rft.eissn=0974-1496&rft_id=info:doi/10.31788/RJC.2023.1618126&rft_dat=%3Ccrossref%3E10_31788_RJC_2023_1618126%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true