THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION
Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and...
Gespeichert in:
Veröffentlicht in: | Rasāyan journal of chemistry 2023, Vol.16 (1), p.38-47 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 47 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Rasāyan journal of chemistry |
container_volume | 16 |
creator | L. Efiyanti Saputra, N.A. Indrawan, D.A. I. Winarni B. Pranoto N. Hastuti Z. Fadhlulloh Y. Rahayuningsih S. Wibowo S. Darmawan Yuniawati Gusmailina S. Komarayati D. Hendra G. Pari |
description | Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%. |
doi_str_mv | 10.31788/RJC.2023.1618126 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31788_RJC_2023_1618126</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31788_RJC_2023_1618126</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1556-52716c37e33a05e7a056b5356bf9b2a2dd254ba420f5bb04aa4f1aaba09f1caf3</originalsourceid><addsrcrecordid>eNpNkE1OwzAUhC0EElXpAdj5Agn-ieNk6aRJa5TElZMKdWXZaSyBQKBkxe0xpQtmMTNPeprFB8AjRjHFPMue9HMZE0RojFOcYZLegBXKeRLhJE9v__V7sFmWNxQUjjzjK_Ay7CvYVr06KK2OPSyk6mUjSwFLMYjm1A-w1qqFotuqbgcL0RZKwaYSNayVhlupq3KIDietwq_soa5EOUjVPYA7b9-XaXPNNTjW1VDuo0btwnoTjZixNGKE43SkfKLUIjbxYKljNJjPHbHkfCYscTYhyDPnUGJt4rG1zqLc49F6ugb4b3ecP5dlnrz5ml8_7PxtMDIXOCbAMb9wzBUO_QFy4k_r</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>L. Efiyanti ; Saputra, N.A. ; Indrawan, D.A. ; I. Winarni ; B. Pranoto ; N. Hastuti ; Z. Fadhlulloh ; Y. Rahayuningsih ; S. Wibowo ; S. Darmawan ; Yuniawati ; Gusmailina ; S. Komarayati ; D. Hendra ; G. Pari</creator><creatorcontrib>L. Efiyanti ; Saputra, N.A. ; Indrawan, D.A. ; I. Winarni ; B. Pranoto ; N. Hastuti ; Z. Fadhlulloh ; Y. Rahayuningsih ; S. Wibowo ; S. Darmawan ; Yuniawati ; Gusmailina ; S. Komarayati ; D. Hendra ; G. Pari</creatorcontrib><description>Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.</description><identifier>ISSN: 0974-1496</identifier><identifier>EISSN: 0974-1496</identifier><identifier>DOI: 10.31788/RJC.2023.1618126</identifier><language>eng</language><ispartof>Rasāyan journal of chemistry, 2023, Vol.16 (1), p.38-47</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,4010,27904,27905,27906</link.rule.ids></links><search><creatorcontrib>L. Efiyanti</creatorcontrib><creatorcontrib>Saputra, N.A.</creatorcontrib><creatorcontrib>Indrawan, D.A.</creatorcontrib><creatorcontrib>I. Winarni</creatorcontrib><creatorcontrib>B. Pranoto</creatorcontrib><creatorcontrib>N. Hastuti</creatorcontrib><creatorcontrib>Z. Fadhlulloh</creatorcontrib><creatorcontrib>Y. Rahayuningsih</creatorcontrib><creatorcontrib>S. Wibowo</creatorcontrib><creatorcontrib>S. Darmawan</creatorcontrib><creatorcontrib>Yuniawati</creatorcontrib><creatorcontrib>Gusmailina</creatorcontrib><creatorcontrib>S. Komarayati</creatorcontrib><creatorcontrib>D. Hendra</creatorcontrib><creatorcontrib>G. Pari</creatorcontrib><title>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</title><title>Rasāyan journal of chemistry</title><description>Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.</description><issn>0974-1496</issn><issn>0974-1496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1OwzAUhC0EElXpAdj5Agn-ieNk6aRJa5TElZMKdWXZaSyBQKBkxe0xpQtmMTNPeprFB8AjRjHFPMue9HMZE0RojFOcYZLegBXKeRLhJE9v__V7sFmWNxQUjjzjK_Ay7CvYVr06KK2OPSyk6mUjSwFLMYjm1A-w1qqFotuqbgcL0RZKwaYSNayVhlupq3KIDietwq_soa5EOUjVPYA7b9-XaXPNNTjW1VDuo0btwnoTjZixNGKE43SkfKLUIjbxYKljNJjPHbHkfCYscTYhyDPnUGJt4rG1zqLc49F6ugb4b3ecP5dlnrz5ml8_7PxtMDIXOCbAMb9wzBUO_QFy4k_r</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>L. Efiyanti</creator><creator>Saputra, N.A.</creator><creator>Indrawan, D.A.</creator><creator>I. Winarni</creator><creator>B. Pranoto</creator><creator>N. Hastuti</creator><creator>Z. Fadhlulloh</creator><creator>Y. Rahayuningsih</creator><creator>S. Wibowo</creator><creator>S. Darmawan</creator><creator>Yuniawati</creator><creator>Gusmailina</creator><creator>S. Komarayati</creator><creator>D. Hendra</creator><creator>G. Pari</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2023</creationdate><title>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</title><author>L. Efiyanti ; Saputra, N.A. ; Indrawan, D.A. ; I. Winarni ; B. Pranoto ; N. Hastuti ; Z. Fadhlulloh ; Y. Rahayuningsih ; S. Wibowo ; S. Darmawan ; Yuniawati ; Gusmailina ; S. Komarayati ; D. Hendra ; G. Pari</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1556-52716c37e33a05e7a056b5356bf9b2a2dd254ba420f5bb04aa4f1aaba09f1caf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>L. Efiyanti</creatorcontrib><creatorcontrib>Saputra, N.A.</creatorcontrib><creatorcontrib>Indrawan, D.A.</creatorcontrib><creatorcontrib>I. Winarni</creatorcontrib><creatorcontrib>B. Pranoto</creatorcontrib><creatorcontrib>N. Hastuti</creatorcontrib><creatorcontrib>Z. Fadhlulloh</creatorcontrib><creatorcontrib>Y. Rahayuningsih</creatorcontrib><creatorcontrib>S. Wibowo</creatorcontrib><creatorcontrib>S. Darmawan</creatorcontrib><creatorcontrib>Yuniawati</creatorcontrib><creatorcontrib>Gusmailina</creatorcontrib><creatorcontrib>S. Komarayati</creatorcontrib><creatorcontrib>D. Hendra</creatorcontrib><creatorcontrib>G. Pari</creatorcontrib><collection>CrossRef</collection><jtitle>Rasāyan journal of chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>L. Efiyanti</au><au>Saputra, N.A.</au><au>Indrawan, D.A.</au><au>I. Winarni</au><au>B. Pranoto</au><au>N. Hastuti</au><au>Z. Fadhlulloh</au><au>Y. Rahayuningsih</au><au>S. Wibowo</au><au>S. Darmawan</au><au>Yuniawati</au><au>Gusmailina</au><au>S. Komarayati</au><au>D. Hendra</au><au>G. Pari</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION</atitle><jtitle>Rasāyan journal of chemistry</jtitle><date>2023</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>38</spage><epage>47</epage><pages>38-47</pages><issn>0974-1496</issn><eissn>0974-1496</eissn><abstract>Silica is a functional material with broad benefits, including as a catalyst. It is essential to substitute synthetic silica with natural silica to support green technology and economic development. The silica extraction process from bamboo leaf waste was carried out using an acid-base solution and a cetyltrimethylammonium bromide (CTAB) template structure to get mesoporous biosilica. This mesoporous biosilica was then applied as a biocatalyst for α-cellulose direct pyrolysis. Biosilica was characterized using various analyses including Fourier Transform Infrared Spectroscopy (FTIR), Surface Area Analyzer (SAA), Scanning Electron Microscope (SEM), gravimetric methods, and applications to the cracking process using Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS). The CTAB addition is divided into three variations, namely 0.05:1, 0.1:1, and 0.2:1. The data found that the highest yield was produced in the CTAB biosilica 0.2:1, and the silica content in the bamboo ash and CTAB biosilica sample was 60% and 90.5- 93.6%, respectively. The surface acidity of the biosilica ranged from 1.97 and 2.1 mmol/g. The essential groups in the biosilica formed are hydroxyl, silanol, and siloxane groups, with the morphology of the silica being observed to be irregular in shape, forming aggregates like coral. The surface area of biosilica with the ratio of 0.05:1, 0.1:1, and 0.2:1 was 177.068 m2 /g, 661.166 m2 /g, and 684.852 m2 /g, respectively, with a pore size distribution following the mesoporous class. The α-cellulose cracking using py-GCMS with a biosilica catalyst at CTAB variations of 0.05:1, 0.1:1, and 0.2:1 yielded a hydrocarbon content of 44.88%; 61.6%; and 30.4%.</abstract><doi>10.31788/RJC.2023.1618126</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0974-1496 |
ispartof | Rasāyan journal of chemistry, 2023, Vol.16 (1), p.38-47 |
issn | 0974-1496 0974-1496 |
language | eng |
recordid | cdi_crossref_primary_10_31788_RJC_2023_1618126 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
title | THE MESOPOROUS BIOSILICA CATALYST FROM ANDONG BAMBOO LEAF FOR DIRECT-PYROLYSIS REACTION |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=THE%20MESOPOROUS%20BIOSILICA%20CATALYST%20FROM%20ANDONG%20BAMBOO%20LEAF%20FOR%20DIRECT-PYROLYSIS%20REACTION&rft.jtitle=Ras%C4%81yan%20journal%20of%20chemistry&rft.au=L.%20Efiyanti&rft.date=2023&rft.volume=16&rft.issue=1&rft.spage=38&rft.epage=47&rft.pages=38-47&rft.issn=0974-1496&rft.eissn=0974-1496&rft_id=info:doi/10.31788/RJC.2023.1618126&rft_dat=%3Ccrossref%3E10_31788_RJC_2023_1618126%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |