Concept Extraction Methods for Agricultural Product–Related Texts Based on Natural Language Processing Techniques: A Case Study of Online Vegetable-Product Reviews

In this paper, we evaluated adaptation problems to general natural language processing (NLP) when applied to online vegetable- product reviews. Some keywords (nouns, verbs, and adjectives) extracted from vegetable- product reviews did not adequately represent their concepts because of generally low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Agricultural Information Research 2016, Vol.25(1), pp.47-58
Hauptverfasser: Takezaki, Akane, Oura, Yuji, Kono, Yoshinobu, Kiura, Takuji, Hayashi, Takeshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 58
container_issue 1
container_start_page 47
container_title Agricultural Information Research
container_volume 25
creator Takezaki, Akane
Oura, Yuji
Kono, Yoshinobu
Kiura, Takuji
Hayashi, Takeshi
description In this paper, we evaluated adaptation problems to general natural language processing (NLP) when applied to online vegetable- product reviews. Some keywords (nouns, verbs, and adjectives) extracted from vegetable- product reviews did not adequately represent their concepts because of generally low accuracy related to chunking, synonyms, a lack of applicable target nouns, and negative concepts. We proposed concept extraction methods based on NLP to solve these problems, including (1) morpheme analysis by reference to an additional custom dictionary; (2) combination of the verb “する” with the preceding noun; (3) acquisition of negative meaning, conversion of the auxiliary verb “ぬ” to the verb “無い” or the suffix “ない”, combination of the prefix “無”, “不”, “低”, “未”, or “非” with the following noun or adjective, and a combination of the suffix “ない” with the preceding adjective or verb; (4) synonym substitution; and (5) identification of target nouns that have related adjectives.
doi_str_mv 10.3173/air.25.47
format Article
fullrecord <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3173_air_25_47</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_air_25_1_25_47_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1627-e59df40b185a0b4a27a444ba05cfd91830798d461fc02c1436bcfee0d737ac163</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEhV0wR94yyLFTpw4QWxKxUsqD5XHNpo4k9QoJMV2eOz4B76BH-NLMAp0NaPRufdqLiF7nE0iLqMD0GYSxhMhN8iIpykP4pBnm2TEMp4EmUjDbTK2VheMhSIVcSxH5GvWtQpXjp68OQPK6a6ll-iWXWlp1Rk6rY1WfeN6Aw29MV3ZK_f98bnABhyW9A7fnKXHYP3ulVcwgHNo6x5q_FUo9JFt7VG1bPVzj_aQTunMS-it68t32lX0um10i_QBa3RQNBj8JdEFvmh8tbtkq4LG4vhv7pD705O72Xkwvz67mE3ngeJJKAOMs7ISrOBpDKwQEEoQQhTAYlWVGU8jJrO0FAmvFAsVF1FSqAqRlTKS4C2iHbI_-CrTWWuwyldGP4F5zznLfyvOfcV5GOdCevZoYB-t86-uSTBOqwb_ST7g67NagsmxjX4Amc-JXg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concept Extraction Methods for Agricultural Product–Related Texts Based on Natural Language Processing Techniques: A Case Study of Online Vegetable-Product Reviews</title><source>J-STAGE Free</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Takezaki, Akane ; Oura, Yuji ; Kono, Yoshinobu ; Kiura, Takuji ; Hayashi, Takeshi</creator><creatorcontrib>Takezaki, Akane ; Oura, Yuji ; Kono, Yoshinobu ; Kiura, Takuji ; Hayashi, Takeshi</creatorcontrib><description>In this paper, we evaluated adaptation problems to general natural language processing (NLP) when applied to online vegetable- product reviews. Some keywords (nouns, verbs, and adjectives) extracted from vegetable- product reviews did not adequately represent their concepts because of generally low accuracy related to chunking, synonyms, a lack of applicable target nouns, and negative concepts. We proposed concept extraction methods based on NLP to solve these problems, including (1) morpheme analysis by reference to an additional custom dictionary; (2) combination of the verb “する” with the preceding noun; (3) acquisition of negative meaning, conversion of the auxiliary verb “ぬ” to the verb “無い” or the suffix “ない”, combination of the prefix “無”, “不”, “低”, “未”, or “非” with the following noun or adjective, and a combination of the suffix “ない” with the preceding adjective or verb; (4) synonym substitution; and (5) identification of target nouns that have related adjectives.</description><identifier>ISSN: 0916-9482</identifier><identifier>EISSN: 1881-5219</identifier><identifier>DOI: 10.3173/air.25.47</identifier><language>eng</language><publisher>Japanese Society of Agricultural Informatics</publisher><subject>morphological analysis ; negative affixes ; parsing ; Review of vegetable products ; synonyms ; TermExtract</subject><ispartof>Agricultural Information Research, 2016, Vol.25(1), pp.47-58</ispartof><rights>2016 Japanese Society of Agricultural Informatics</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1627-e59df40b185a0b4a27a444ba05cfd91830798d461fc02c1436bcfee0d737ac163</citedby><cites>FETCH-LOGICAL-c1627-e59df40b185a0b4a27a444ba05cfd91830798d461fc02c1436bcfee0d737ac163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Takezaki, Akane</creatorcontrib><creatorcontrib>Oura, Yuji</creatorcontrib><creatorcontrib>Kono, Yoshinobu</creatorcontrib><creatorcontrib>Kiura, Takuji</creatorcontrib><creatorcontrib>Hayashi, Takeshi</creatorcontrib><title>Concept Extraction Methods for Agricultural Product–Related Texts Based on Natural Language Processing Techniques: A Case Study of Online Vegetable-Product Reviews</title><title>Agricultural Information Research</title><addtitle>Agricultural Information Research</addtitle><description>In this paper, we evaluated adaptation problems to general natural language processing (NLP) when applied to online vegetable- product reviews. Some keywords (nouns, verbs, and adjectives) extracted from vegetable- product reviews did not adequately represent their concepts because of generally low accuracy related to chunking, synonyms, a lack of applicable target nouns, and negative concepts. We proposed concept extraction methods based on NLP to solve these problems, including (1) morpheme analysis by reference to an additional custom dictionary; (2) combination of the verb “する” with the preceding noun; (3) acquisition of negative meaning, conversion of the auxiliary verb “ぬ” to the verb “無い” or the suffix “ない”, combination of the prefix “無”, “不”, “低”, “未”, or “非” with the following noun or adjective, and a combination of the suffix “ない” with the preceding adjective or verb; (4) synonym substitution; and (5) identification of target nouns that have related adjectives.</description><subject>morphological analysis</subject><subject>negative affixes</subject><subject>parsing</subject><subject>Review of vegetable products</subject><subject>synonyms</subject><subject>TermExtract</subject><issn>0916-9482</issn><issn>1881-5219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EEhV0wR94yyLFTpw4QWxKxUsqD5XHNpo4k9QoJMV2eOz4B76BH-NLMAp0NaPRufdqLiF7nE0iLqMD0GYSxhMhN8iIpykP4pBnm2TEMp4EmUjDbTK2VheMhSIVcSxH5GvWtQpXjp68OQPK6a6ll-iWXWlp1Rk6rY1WfeN6Aw29MV3ZK_f98bnABhyW9A7fnKXHYP3ulVcwgHNo6x5q_FUo9JFt7VG1bPVzj_aQTunMS-it68t32lX0um10i_QBa3RQNBj8JdEFvmh8tbtkq4LG4vhv7pD705O72Xkwvz67mE3ngeJJKAOMs7ISrOBpDKwQEEoQQhTAYlWVGU8jJrO0FAmvFAsVF1FSqAqRlTKS4C2iHbI_-CrTWWuwyldGP4F5zznLfyvOfcV5GOdCevZoYB-t86-uSTBOqwb_ST7g67NagsmxjX4Amc-JXg</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Takezaki, Akane</creator><creator>Oura, Yuji</creator><creator>Kono, Yoshinobu</creator><creator>Kiura, Takuji</creator><creator>Hayashi, Takeshi</creator><general>Japanese Society of Agricultural Informatics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>Concept Extraction Methods for Agricultural Product–Related Texts Based on Natural Language Processing Techniques: A Case Study of Online Vegetable-Product Reviews</title><author>Takezaki, Akane ; Oura, Yuji ; Kono, Yoshinobu ; Kiura, Takuji ; Hayashi, Takeshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1627-e59df40b185a0b4a27a444ba05cfd91830798d461fc02c1436bcfee0d737ac163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>morphological analysis</topic><topic>negative affixes</topic><topic>parsing</topic><topic>Review of vegetable products</topic><topic>synonyms</topic><topic>TermExtract</topic><toplevel>online_resources</toplevel><creatorcontrib>Takezaki, Akane</creatorcontrib><creatorcontrib>Oura, Yuji</creatorcontrib><creatorcontrib>Kono, Yoshinobu</creatorcontrib><creatorcontrib>Kiura, Takuji</creatorcontrib><creatorcontrib>Hayashi, Takeshi</creatorcontrib><collection>CrossRef</collection><jtitle>Agricultural Information Research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takezaki, Akane</au><au>Oura, Yuji</au><au>Kono, Yoshinobu</au><au>Kiura, Takuji</au><au>Hayashi, Takeshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concept Extraction Methods for Agricultural Product–Related Texts Based on Natural Language Processing Techniques: A Case Study of Online Vegetable-Product Reviews</atitle><jtitle>Agricultural Information Research</jtitle><addtitle>Agricultural Information Research</addtitle><date>2016</date><risdate>2016</risdate><volume>25</volume><issue>1</issue><spage>47</spage><epage>58</epage><pages>47-58</pages><issn>0916-9482</issn><eissn>1881-5219</eissn><abstract>In this paper, we evaluated adaptation problems to general natural language processing (NLP) when applied to online vegetable- product reviews. Some keywords (nouns, verbs, and adjectives) extracted from vegetable- product reviews did not adequately represent their concepts because of generally low accuracy related to chunking, synonyms, a lack of applicable target nouns, and negative concepts. We proposed concept extraction methods based on NLP to solve these problems, including (1) morpheme analysis by reference to an additional custom dictionary; (2) combination of the verb “する” with the preceding noun; (3) acquisition of negative meaning, conversion of the auxiliary verb “ぬ” to the verb “無い” or the suffix “ない”, combination of the prefix “無”, “不”, “低”, “未”, or “非” with the following noun or adjective, and a combination of the suffix “ない” with the preceding adjective or verb; (4) synonym substitution; and (5) identification of target nouns that have related adjectives.</abstract><pub>Japanese Society of Agricultural Informatics</pub><doi>10.3173/air.25.47</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0916-9482
ispartof Agricultural Information Research, 2016, Vol.25(1), pp.47-58
issn 0916-9482
1881-5219
language eng
recordid cdi_crossref_primary_10_3173_air_25_47
source J-STAGE Free; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects morphological analysis
negative affixes
parsing
Review of vegetable products
synonyms
TermExtract
title Concept Extraction Methods for Agricultural Product–Related Texts Based on Natural Language Processing Techniques: A Case Study of Online Vegetable-Product Reviews
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A17%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concept%20Extraction%20Methods%20for%20Agricultural%20Product%E2%80%93Related%20Texts%20Based%20on%20Natural%20Language%20Processing%20Techniques:%20A%20Case%20Study%20of%20Online%20Vegetable-Product%20Reviews&rft.jtitle=Agricultural%20Information%20Research&rft.au=Takezaki,%20Akane&rft.date=2016&rft.volume=25&rft.issue=1&rft.spage=47&rft.epage=58&rft.pages=47-58&rft.issn=0916-9482&rft.eissn=1881-5219&rft_id=info:doi/10.3173/air.25.47&rft_dat=%3Cjstage_cross%3Earticle_air_25_1_25_47_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true