Spectral analysis of high-dimensional sample covariance matrices with missing observations
We study high-dimensional sample covariance matrices based on independent random vectors with missing coordinates. The presence of missing observations is common in modern applications such as climate studies or gene expression micro-arrays. A weak approximation on the spectral distribution in the &...
Gespeichert in:
Veröffentlicht in: | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2017-11, Vol.23 (4A), p.2466-2532 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2532 |
---|---|
container_issue | 4A |
container_start_page | 2466 |
container_title | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
container_volume | 23 |
creator | JURCZAK, KAMIL ROHDE, ANGELIKA |
description | We study high-dimensional sample covariance matrices based on independent random vectors with missing coordinates. The presence of missing observations is common in modern applications such as climate studies or gene expression micro-arrays. A weak approximation on the spectral distribution in the "large dimension d and large sample size n" asymptotics is derived for possibly different observation probabilities in the coordinates. The spectral distribution turns out to be strongly influenced by the missingness mechanism. In the null case under the missing at random scenario where each component is observed with the same probability p, the limiting spectral distribution is a Marčenko–Pastur law shifted by (1 – p)/p to the left. As d/n → y ϵ (0, 1), the almost sure convergence of the extremal eigenvalues to the respective boundary points of the support of the limiting spectral distribution is proved, which are explicitly given in terms of y and p. Eventually, the sample covariance matrix is positive definite if p is larger than 1 – (1 – √y)2, whereas this is not true any longer if p is smaller than this quantity. |
doi_str_mv | 10.3150/16-BEJ815 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3150_16_BEJ815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26492031</jstor_id><sourcerecordid>26492031</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-e256d2f6d6cb55853ebe6d6189f559c6e6f764f58fe1fa0b7c8904482fff22273</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhD2ARCkM_AAkrwwB24nfOCNU5UuVGICFJXKc142rfFR-o6L-e4KCmE53eu6GY-xKittUanEnIXlYvxqpT9hCplokuQJ9xs6JdkLIDEAs2Nf7Ht0Ybcttb9sjBeKD503YNkkdOuwpDFPOyXb7FrkbDjYG2zvknR1jcEj8O4wN7wJR6Ld8qAjjwY5Tiy7Yqbct4eWfLtnn4_pj9Zxs3p5eVvebxCkDY4JKQ6081OAqrY1OscLJSFN4rQsHCD6HzGvjUXorqtyZQmSZUd57pVSeLtnNvOviQBTRl_sYOhuPpRTl7xGlhHI-YmKvZ3ZH4xD_QQVZoUQq0x_C2l4B</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Spectral analysis of high-dimensional sample covariance matrices with missing observations</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>Project Euclid Complete</source><creator>JURCZAK, KAMIL ; ROHDE, ANGELIKA</creator><creatorcontrib>JURCZAK, KAMIL ; ROHDE, ANGELIKA</creatorcontrib><description>We study high-dimensional sample covariance matrices based on independent random vectors with missing coordinates. The presence of missing observations is common in modern applications such as climate studies or gene expression micro-arrays. A weak approximation on the spectral distribution in the "large dimension d and large sample size n" asymptotics is derived for possibly different observation probabilities in the coordinates. The spectral distribution turns out to be strongly influenced by the missingness mechanism. In the null case under the missing at random scenario where each component is observed with the same probability p, the limiting spectral distribution is a Marčenko–Pastur law shifted by (1 – p)/p to the left. As d/n → y ϵ (0, 1), the almost sure convergence of the extremal eigenvalues to the respective boundary points of the support of the limiting spectral distribution is proved, which are explicitly given in terms of y and p. Eventually, the sample covariance matrix is positive definite if p is larger than 1 – (1 – √y)2, whereas this is not true any longer if p is smaller than this quantity.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/16-BEJ815</identifier><language>eng</language><publisher>INTERNATIONAL STATISTICAL INSTITUTE</publisher><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2017-11, Vol.23 (4A), p.2466-2532</ispartof><rights>2017 International Statistical Institute/Bernoulli Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-e256d2f6d6cb55853ebe6d6189f559c6e6f764f58fe1fa0b7c8904482fff22273</citedby><cites>FETCH-LOGICAL-c286t-e256d2f6d6cb55853ebe6d6189f559c6e6f764f58fe1fa0b7c8904482fff22273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26492031$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26492031$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,778,782,801,830,27911,27912,58004,58008,58237,58241</link.rule.ids></links><search><creatorcontrib>JURCZAK, KAMIL</creatorcontrib><creatorcontrib>ROHDE, ANGELIKA</creatorcontrib><title>Spectral analysis of high-dimensional sample covariance matrices with missing observations</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We study high-dimensional sample covariance matrices based on independent random vectors with missing coordinates. The presence of missing observations is common in modern applications such as climate studies or gene expression micro-arrays. A weak approximation on the spectral distribution in the "large dimension d and large sample size n" asymptotics is derived for possibly different observation probabilities in the coordinates. The spectral distribution turns out to be strongly influenced by the missingness mechanism. In the null case under the missing at random scenario where each component is observed with the same probability p, the limiting spectral distribution is a Marčenko–Pastur law shifted by (1 – p)/p to the left. As d/n → y ϵ (0, 1), the almost sure convergence of the extremal eigenvalues to the respective boundary points of the support of the limiting spectral distribution is proved, which are explicitly given in terms of y and p. Eventually, the sample covariance matrix is positive definite if p is larger than 1 – (1 – √y)2, whereas this is not true any longer if p is smaller than this quantity.</description><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhD2ARCkM_AAkrwwB24nfOCNU5UuVGICFJXKc142rfFR-o6L-e4KCmE53eu6GY-xKittUanEnIXlYvxqpT9hCplokuQJ9xs6JdkLIDEAs2Nf7Ht0Ybcttb9sjBeKD503YNkkdOuwpDFPOyXb7FrkbDjYG2zvknR1jcEj8O4wN7wJR6Ld8qAjjwY5Tiy7Yqbct4eWfLtnn4_pj9Zxs3p5eVvebxCkDY4JKQ6081OAqrY1OscLJSFN4rQsHCD6HzGvjUXorqtyZQmSZUd57pVSeLtnNvOviQBTRl_sYOhuPpRTl7xGlhHI-YmKvZ3ZH4xD_QQVZoUQq0x_C2l4B</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>JURCZAK, KAMIL</creator><creator>ROHDE, ANGELIKA</creator><general>INTERNATIONAL STATISTICAL INSTITUTE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Spectral analysis of high-dimensional sample covariance matrices with missing observations</title><author>JURCZAK, KAMIL ; ROHDE, ANGELIKA</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-e256d2f6d6cb55853ebe6d6189f559c6e6f764f58fe1fa0b7c8904482fff22273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>JURCZAK, KAMIL</creatorcontrib><creatorcontrib>ROHDE, ANGELIKA</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>JURCZAK, KAMIL</au><au>ROHDE, ANGELIKA</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Spectral analysis of high-dimensional sample covariance matrices with missing observations</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2017-11-01</date><risdate>2017</risdate><volume>23</volume><issue>4A</issue><spage>2466</spage><epage>2532</epage><pages>2466-2532</pages><issn>1350-7265</issn><abstract>We study high-dimensional sample covariance matrices based on independent random vectors with missing coordinates. The presence of missing observations is common in modern applications such as climate studies or gene expression micro-arrays. A weak approximation on the spectral distribution in the "large dimension d and large sample size n" asymptotics is derived for possibly different observation probabilities in the coordinates. The spectral distribution turns out to be strongly influenced by the missingness mechanism. In the null case under the missing at random scenario where each component is observed with the same probability p, the limiting spectral distribution is a Marčenko–Pastur law shifted by (1 – p)/p to the left. As d/n → y ϵ (0, 1), the almost sure convergence of the extremal eigenvalues to the respective boundary points of the support of the limiting spectral distribution is proved, which are explicitly given in terms of y and p. Eventually, the sample covariance matrix is positive definite if p is larger than 1 – (1 – √y)2, whereas this is not true any longer if p is smaller than this quantity.</abstract><pub>INTERNATIONAL STATISTICAL INSTITUTE</pub><doi>10.3150/16-BEJ815</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-7265 |
ispartof | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2017-11, Vol.23 (4A), p.2466-2532 |
issn | 1350-7265 |
language | eng |
recordid | cdi_crossref_primary_10_3150_16_BEJ815 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; Project Euclid Complete |
title | Spectral analysis of high-dimensional sample covariance matrices with missing observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T23%3A03%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Spectral%20analysis%20of%20high-dimensional%20sample%20covariance%20matrices%20with%20missing%20observations&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=JURCZAK,%20KAMIL&rft.date=2017-11-01&rft.volume=23&rft.issue=4A&rft.spage=2466&rft.epage=2532&rft.pages=2466-2532&rft.issn=1350-7265&rft_id=info:doi/10.3150/16-BEJ815&rft_dat=%3Cjstor_cross%3E26492031%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26492031&rfr_iscdi=true |