Optimal exponential bounds for aggregation of density estimators

We consider the problem of model selection type aggregation in the context of density estimation. We first show that empirical risk minimization is sub-optimal for this problem and it shares this property with the exponential weights aggregate, empirical risk minimization over the convex hull of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability 2017-02, Vol.23 (1), p.219-248
1. Verfasser: BELLEC, PIERRE C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 248
container_issue 1
container_start_page 219
container_title Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability
container_volume 23
creator BELLEC, PIERRE C.
description We consider the problem of model selection type aggregation in the context of density estimation. We first show that empirical risk minimization is sub-optimal for this problem and it shares this property with the exponential weights aggregate, empirical risk minimization over the convex hull of the dictionary functions, and all selectors. Using a penalty inspired by recent works on the Q-aggregation procedure, we derive a sharp oracle inequality in deviation under a simple boundedness assumption and we show that the rate is optimal in a minimax sense. Unlike the procedures based on exponential weights, this estimator is fully adaptive under the uniform prior. In particular, its construction does not rely on the sup-norm of the unknown density. By providing lower bounds with exponential tails, we show that the deviation term appearing in the sharp oracle inequalities cannot be improved.
doi_str_mv 10.3150/15-BEJ742
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3150_15_BEJ742</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>44075469</jstor_id><sourcerecordid>44075469</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-28227c3d41aa90ff9b455835143d90786c5abd6308112a90edc6cc1a412ea9993</originalsourceid><addsrcrecordid>eNo9jztPwzAcxD2ARCkMfAAkrwwG__1KvAFVy0OVusAcOX5EqUoc2Uai355UQUx3w-9OdwjdAL3nIOkDSPK8fq8EO0ML4JKSiil5gS5z3lMKQim6QI-7sfRf5oD9zxgHP5R-8m38HlzGISZsui75zpQ-DjgG7PyQ-3LEPp9SJaZ8hc6DOWR__adL9LlZf6xeyXb38rZ62hLLalUIqxmrLHcCjNE0BN0KKWsuQXCnaVUrK03rFKc1AJsI76yyFowA5o3Wmi_R3dxrU8w5-dCMaZqQjg3Q5nS3AdnMdyf2dmb3eZr4DwpBKymU5r9vC1NA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Optimal exponential bounds for aggregation of density estimators</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>BELLEC, PIERRE C.</creator><creatorcontrib>BELLEC, PIERRE C.</creatorcontrib><description>We consider the problem of model selection type aggregation in the context of density estimation. We first show that empirical risk minimization is sub-optimal for this problem and it shares this property with the exponential weights aggregate, empirical risk minimization over the convex hull of the dictionary functions, and all selectors. Using a penalty inspired by recent works on the Q-aggregation procedure, we derive a sharp oracle inequality in deviation under a simple boundedness assumption and we show that the rate is optimal in a minimax sense. Unlike the procedures based on exponential weights, this estimator is fully adaptive under the uniform prior. In particular, its construction does not rely on the sup-norm of the unknown density. By providing lower bounds with exponential tails, we show that the deviation term appearing in the sharp oracle inequalities cannot be improved.</description><identifier>ISSN: 1350-7265</identifier><identifier>DOI: 10.3150/15-BEJ742</identifier><language>eng</language><publisher>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</publisher><ispartof>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2017-02, Vol.23 (1), p.219-248</ispartof><rights>2017 International Statistical Institute/Bernoulli Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c286t-28227c3d41aa90ff9b455835143d90786c5abd6308112a90edc6cc1a412ea9993</citedby><cites>FETCH-LOGICAL-c286t-28227c3d41aa90ff9b455835143d90786c5abd6308112a90edc6cc1a412ea9993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/44075469$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/44075469$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27922,27923,58015,58019,58248,58252</link.rule.ids></links><search><creatorcontrib>BELLEC, PIERRE C.</creatorcontrib><title>Optimal exponential bounds for aggregation of density estimators</title><title>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</title><description>We consider the problem of model selection type aggregation in the context of density estimation. We first show that empirical risk minimization is sub-optimal for this problem and it shares this property with the exponential weights aggregate, empirical risk minimization over the convex hull of the dictionary functions, and all selectors. Using a penalty inspired by recent works on the Q-aggregation procedure, we derive a sharp oracle inequality in deviation under a simple boundedness assumption and we show that the rate is optimal in a minimax sense. Unlike the procedures based on exponential weights, this estimator is fully adaptive under the uniform prior. In particular, its construction does not rely on the sup-norm of the unknown density. By providing lower bounds with exponential tails, we show that the deviation term appearing in the sharp oracle inequalities cannot be improved.</description><issn>1350-7265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9jztPwzAcxD2ARCkMfAAkrwwG__1KvAFVy0OVusAcOX5EqUoc2Uai355UQUx3w-9OdwjdAL3nIOkDSPK8fq8EO0ML4JKSiil5gS5z3lMKQim6QI-7sfRf5oD9zxgHP5R-8m38HlzGISZsui75zpQ-DjgG7PyQ-3LEPp9SJaZ8hc6DOWR__adL9LlZf6xeyXb38rZ62hLLalUIqxmrLHcCjNE0BN0KKWsuQXCnaVUrK03rFKc1AJsI76yyFowA5o3Wmi_R3dxrU8w5-dCMaZqQjg3Q5nS3AdnMdyf2dmb3eZr4DwpBKymU5r9vC1NA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>BELLEC, PIERRE C.</creator><general>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>Optimal exponential bounds for aggregation of density estimators</title><author>BELLEC, PIERRE C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-28227c3d41aa90ff9b455835143d90786c5abd6308112a90edc6cc1a412ea9993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>BELLEC, PIERRE C.</creatorcontrib><collection>CrossRef</collection><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>BELLEC, PIERRE C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal exponential bounds for aggregation of density estimators</atitle><jtitle>Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>23</volume><issue>1</issue><spage>219</spage><epage>248</epage><pages>219-248</pages><issn>1350-7265</issn><abstract>We consider the problem of model selection type aggregation in the context of density estimation. We first show that empirical risk minimization is sub-optimal for this problem and it shares this property with the exponential weights aggregate, empirical risk minimization over the convex hull of the dictionary functions, and all selectors. Using a penalty inspired by recent works on the Q-aggregation procedure, we derive a sharp oracle inequality in deviation under a simple boundedness assumption and we show that the rate is optimal in a minimax sense. Unlike the procedures based on exponential weights, this estimator is fully adaptive under the uniform prior. In particular, its construction does not rely on the sup-norm of the unknown density. By providing lower bounds with exponential tails, we show that the deviation term appearing in the sharp oracle inequalities cannot be improved.</abstract><pub>International Statistical Institute and Bernoulli Society for Mathematical Statistics and Probability</pub><doi>10.3150/15-BEJ742</doi><tpages>30</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-7265
ispartof Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability, 2017-02, Vol.23 (1), p.219-248
issn 1350-7265
language eng
recordid cdi_crossref_primary_10_3150_15_BEJ742
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete
title Optimal exponential bounds for aggregation of density estimators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T05%3A29%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20exponential%20bounds%20for%20aggregation%20of%20density%20estimators&rft.jtitle=Bernoulli%20:%20official%20journal%20of%20the%20Bernoulli%20Society%20for%20Mathematical%20Statistics%20and%20Probability&rft.au=BELLEC,%20PIERRE%20C.&rft.date=2017-02-01&rft.volume=23&rft.issue=1&rft.spage=219&rft.epage=248&rft.pages=219-248&rft.issn=1350-7265&rft_id=info:doi/10.3150/15-BEJ742&rft_dat=%3Cjstor_cross%3E44075469%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=44075469&rfr_iscdi=true