Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network
This research sought to model traffic accidents in the bus rapid transit (BRT) system in Bogotá, Colombia. For each BRT station, 35 variables related to system flows, infrastructure, service, surroundings, and socio-economic context were tested. After a selection process, a set of 11 explanatory var...
Gespeichert in:
Veröffentlicht in: | Transportation research record 2015-01, Vol.2512 (1), p.38-45 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 45 |
---|---|
container_issue | 1 |
container_start_page | 38 |
container_title | Transportation research record |
container_volume | 2512 |
creator | Gómez, Fidel Bocarejo, Juan Pablo |
description | This research sought to model traffic accidents in the bus rapid transit (BRT) system in Bogotá, Colombia. For each BRT station, 35 variables related to system flows, infrastructure, service, surroundings, and socio-economic context were tested. After a selection process, a set of 11 explanatory variables was obtained and used in the development of generalized linear models (Poisson and negative binomial models) and a neural network model. The results showed that the neural network model had better predictability indicators than did those obtained by the Poisson and negative binomial models. Additionally, the negative binomial regression model did not produce better predictions than did the Poisson regression model. Finally, a scenario analysis was developed from the most relevant variables: bus flow, number of accesses, and proximity to at-grade vehicular intersections. |
doi_str_mv | 10.3141/2512-05 |
format | Article |
fullrecord | <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3141_2512_05</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3141_2512-05</sage_id><sourcerecordid>10.3141_2512-05</sourcerecordid><originalsourceid>FETCH-LOGICAL-c244t-9c6edddf083fa5002d08e390156012d9e71890d11b5c604ccb565c015c9548ed3</originalsourceid><addsrcrecordid>eNplj81KAzEYRYMoWKv4ClkIrqLfl78my1r8g4qidR3SJCMp7UxJpou-vVPqztVd3MPlHkKuEe4ESrznCjkDdUJGHLVlEhQ_JSMQGhlag-fkotYVgBByIkbETEPIMbU9_Sgp5tDnrqVvXUzrSpuu0IddpZ9-myNdFN_W3NOvfe3Tpl6Ss8ava7r6yzH5fnpczF7Y_P35dTads8Cl7JkNOsUYGzCi8QqARzBJWEClAXm0aYLGQkRcqqBBhrBUWoWhDlZJk6IYk9vjbihdrSU1blvyxpe9Q3AHYXcQdqAG8uZIVv-T3KrblXY49g_7BW7SUW0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network</title><source>SAGE Complete A-Z List</source><creator>Gómez, Fidel ; Bocarejo, Juan Pablo</creator><creatorcontrib>Gómez, Fidel ; Bocarejo, Juan Pablo</creatorcontrib><description>This research sought to model traffic accidents in the bus rapid transit (BRT) system in Bogotá, Colombia. For each BRT station, 35 variables related to system flows, infrastructure, service, surroundings, and socio-economic context were tested. After a selection process, a set of 11 explanatory variables was obtained and used in the development of generalized linear models (Poisson and negative binomial models) and a neural network model. The results showed that the neural network model had better predictability indicators than did those obtained by the Poisson and negative binomial models. Additionally, the negative binomial regression model did not produce better predictions than did the Poisson regression model. Finally, a scenario analysis was developed from the most relevant variables: bus flow, number of accesses, and proximity to at-grade vehicular intersections.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.3141/2512-05</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2015-01, Vol.2512 (1), p.38-45</ispartof><rights>2015 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c244t-9c6edddf083fa5002d08e390156012d9e71890d11b5c604ccb565c015c9548ed3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3141/2512-05$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3141/2512-05$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Gómez, Fidel</creatorcontrib><creatorcontrib>Bocarejo, Juan Pablo</creatorcontrib><title>Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network</title><title>Transportation research record</title><description>This research sought to model traffic accidents in the bus rapid transit (BRT) system in Bogotá, Colombia. For each BRT station, 35 variables related to system flows, infrastructure, service, surroundings, and socio-economic context were tested. After a selection process, a set of 11 explanatory variables was obtained and used in the development of generalized linear models (Poisson and negative binomial models) and a neural network model. The results showed that the neural network model had better predictability indicators than did those obtained by the Poisson and negative binomial models. Additionally, the negative binomial regression model did not produce better predictions than did the Poisson regression model. Finally, a scenario analysis was developed from the most relevant variables: bus flow, number of accesses, and proximity to at-grade vehicular intersections.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNplj81KAzEYRYMoWKv4ClkIrqLfl78my1r8g4qidR3SJCMp7UxJpou-vVPqztVd3MPlHkKuEe4ESrznCjkDdUJGHLVlEhQ_JSMQGhlag-fkotYVgBByIkbETEPIMbU9_Sgp5tDnrqVvXUzrSpuu0IddpZ9-myNdFN_W3NOvfe3Tpl6Ss8ava7r6yzH5fnpczF7Y_P35dTads8Cl7JkNOsUYGzCi8QqARzBJWEClAXm0aYLGQkRcqqBBhrBUWoWhDlZJk6IYk9vjbihdrSU1blvyxpe9Q3AHYXcQdqAG8uZIVv-T3KrblXY49g_7BW7SUW0</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Gómez, Fidel</creator><creator>Bocarejo, Juan Pablo</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201501</creationdate><title>Accident Prediction Models for Bus Rapid Transit Systems</title><author>Gómez, Fidel ; Bocarejo, Juan Pablo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c244t-9c6edddf083fa5002d08e390156012d9e71890d11b5c604ccb565c015c9548ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Fidel</creatorcontrib><creatorcontrib>Bocarejo, Juan Pablo</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Fidel</au><au>Bocarejo, Juan Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network</atitle><jtitle>Transportation research record</jtitle><date>2015-01</date><risdate>2015</risdate><volume>2512</volume><issue>1</issue><spage>38</spage><epage>45</epage><pages>38-45</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>This research sought to model traffic accidents in the bus rapid transit (BRT) system in Bogotá, Colombia. For each BRT station, 35 variables related to system flows, infrastructure, service, surroundings, and socio-economic context were tested. After a selection process, a set of 11 explanatory variables was obtained and used in the development of generalized linear models (Poisson and negative binomial models) and a neural network model. The results showed that the neural network model had better predictability indicators than did those obtained by the Poisson and negative binomial models. Additionally, the negative binomial regression model did not produce better predictions than did the Poisson regression model. Finally, a scenario analysis was developed from the most relevant variables: bus flow, number of accesses, and proximity to at-grade vehicular intersections.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3141/2512-05</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-1981 |
ispartof | Transportation research record, 2015-01, Vol.2512 (1), p.38-45 |
issn | 0361-1981 2169-4052 |
language | eng |
recordid | cdi_crossref_primary_10_3141_2512_05 |
source | SAGE Complete A-Z List |
title | Accident Prediction Models for Bus Rapid Transit Systems: Generalized Linear Models Compared with a Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T02%3A03%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accident%20Prediction%20Models%20for%20Bus%20Rapid%20Transit%20Systems:%20Generalized%20Linear%20Models%20Compared%20with%20a%20Neural%20Network&rft.jtitle=Transportation%20research%20record&rft.au=G%C3%B3mez,%20Fidel&rft.date=2015-01&rft.volume=2512&rft.issue=1&rft.spage=38&rft.epage=45&rft.pages=38-45&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.3141/2512-05&rft_dat=%3Csage_cross%3E10.3141_2512-05%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.3141_2512-05&rfr_iscdi=true |