Identifying Causes of Performance Issues in Bus Schedule Adherence with Automatic Vehicle Location and Passenger Count Data

Automatic vehicle location (AVL) and automatic passenger counting (APC) systems can provide rich archived databases for analysis. Previous work has focused on using AVL–APC data to evaluate system performance using various quantitative performance measures and data visualization methods. Given the l...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2010-01, Vol.2143 (1), p.9-15
Hauptverfasser: Mandelzys, Michael, Hellinga, Bruce
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 1
container_start_page 9
container_title Transportation research record
container_volume 2143
creator Mandelzys, Michael
Hellinga, Bruce
description Automatic vehicle location (AVL) and automatic passenger counting (APC) systems can provide rich archived databases for analysis. Previous work has focused on using AVL–APC data to evaluate system performance using various quantitative performance measures and data visualization methods. Given the large volume of data, there is a benefit to automating the creation of performance measures and data visualizations and “pushing” interesting information to users, rather than requiring users to create the performance measures and figures and sift through them on their own. This paper presents a methodology for identifying bus stops that are not meeting performance standards for schedule adherence and the factors that cause inadequate performance. The methodology is designed to be automated and therefore can be applied efficiently to AVL–APC data for an entire transit network. Use of this proposed method will enable transit agencies to identify service quality issues and their root causes more efficiently.
doi_str_mv 10.3141/2143-02
format Article
fullrecord <record><control><sourceid>sage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3141_2143_02</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.3141_2143-02</sage_id><sourcerecordid>10.3141_2143-02</sourcerecordid><originalsourceid>FETCH-LOGICAL-c315t-3255442f338cfdb3fd0706b0e49bd1b66cd77dbe24ba5e821d7eccfd1ce36cc83</originalsourceid><addsrcrecordid>eNpl0ElLAzEUB_AgCtYFv0IOgqfRbLP0WMetULDgch0yyUsnpU0kC1L88k6pN0-P9_jx5_FH6IqSW04FvWNU8IKwIzRhtJoWgpTsGE0Ir2hBpw09RWcxrgnhXNR8gn7mGlyyZmfdCrcyR4jYG7yEYHzYSqcAz2PM49U6fJ8jflMD6LwBPNMDBNiDb5sGPMvJb2WyCn_CYNUIFl6Nu3dYOo2XMkZwKwi49dkl_CCTvEAnRm4iXP7Nc_Tx9PjevhSL1-d5O1sUitMyFZyVpRDMcN4oo3tuNKlJ1RMQ017TvqqUrmvdAxO9LKFhVNegRkkV8Eqphp-jm0OuCj7GAKb7CnYrw66jpNt31u076wgb5fVBRrmCbu1zcONj_9gvE6Zrgw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Identifying Causes of Performance Issues in Bus Schedule Adherence with Automatic Vehicle Location and Passenger Count Data</title><source>SAGE Complete</source><creator>Mandelzys, Michael ; Hellinga, Bruce</creator><creatorcontrib>Mandelzys, Michael ; Hellinga, Bruce</creatorcontrib><description>Automatic vehicle location (AVL) and automatic passenger counting (APC) systems can provide rich archived databases for analysis. Previous work has focused on using AVL–APC data to evaluate system performance using various quantitative performance measures and data visualization methods. Given the large volume of data, there is a benefit to automating the creation of performance measures and data visualizations and “pushing” interesting information to users, rather than requiring users to create the performance measures and figures and sift through them on their own. This paper presents a methodology for identifying bus stops that are not meeting performance standards for schedule adherence and the factors that cause inadequate performance. The methodology is designed to be automated and therefore can be applied efficiently to AVL–APC data for an entire transit network. Use of this proposed method will enable transit agencies to identify service quality issues and their root causes more efficiently.</description><identifier>ISSN: 0361-1981</identifier><identifier>EISSN: 2169-4052</identifier><identifier>DOI: 10.3141/2143-02</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><ispartof>Transportation research record, 2010-01, Vol.2143 (1), p.9-15</ispartof><rights>2010 National Academy of Sciences</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c315t-3255442f338cfdb3fd0706b0e49bd1b66cd77dbe24ba5e821d7eccfd1ce36cc83</citedby><cites>FETCH-LOGICAL-c315t-3255442f338cfdb3fd0706b0e49bd1b66cd77dbe24ba5e821d7eccfd1ce36cc83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.3141/2143-02$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.3141/2143-02$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Mandelzys, Michael</creatorcontrib><creatorcontrib>Hellinga, Bruce</creatorcontrib><title>Identifying Causes of Performance Issues in Bus Schedule Adherence with Automatic Vehicle Location and Passenger Count Data</title><title>Transportation research record</title><description>Automatic vehicle location (AVL) and automatic passenger counting (APC) systems can provide rich archived databases for analysis. Previous work has focused on using AVL–APC data to evaluate system performance using various quantitative performance measures and data visualization methods. Given the large volume of data, there is a benefit to automating the creation of performance measures and data visualizations and “pushing” interesting information to users, rather than requiring users to create the performance measures and figures and sift through them on their own. This paper presents a methodology for identifying bus stops that are not meeting performance standards for schedule adherence and the factors that cause inadequate performance. The methodology is designed to be automated and therefore can be applied efficiently to AVL–APC data for an entire transit network. Use of this proposed method will enable transit agencies to identify service quality issues and their root causes more efficiently.</description><issn>0361-1981</issn><issn>2169-4052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpl0ElLAzEUB_AgCtYFv0IOgqfRbLP0WMetULDgch0yyUsnpU0kC1L88k6pN0-P9_jx5_FH6IqSW04FvWNU8IKwIzRhtJoWgpTsGE0Ir2hBpw09RWcxrgnhXNR8gn7mGlyyZmfdCrcyR4jYG7yEYHzYSqcAz2PM49U6fJ8jflMD6LwBPNMDBNiDb5sGPMvJb2WyCn_CYNUIFl6Nu3dYOo2XMkZwKwi49dkl_CCTvEAnRm4iXP7Nc_Tx9PjevhSL1-d5O1sUitMyFZyVpRDMcN4oo3tuNKlJ1RMQ017TvqqUrmvdAxO9LKFhVNegRkkV8Eqphp-jm0OuCj7GAKb7CnYrw66jpNt31u076wgb5fVBRrmCbu1zcONj_9gvE6Zrgw</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Mandelzys, Michael</creator><creator>Hellinga, Bruce</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100101</creationdate><title>Identifying Causes of Performance Issues in Bus Schedule Adherence with Automatic Vehicle Location and Passenger Count Data</title><author>Mandelzys, Michael ; Hellinga, Bruce</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c315t-3255442f338cfdb3fd0706b0e49bd1b66cd77dbe24ba5e821d7eccfd1ce36cc83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mandelzys, Michael</creatorcontrib><creatorcontrib>Hellinga, Bruce</creatorcontrib><collection>CrossRef</collection><jtitle>Transportation research record</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mandelzys, Michael</au><au>Hellinga, Bruce</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying Causes of Performance Issues in Bus Schedule Adherence with Automatic Vehicle Location and Passenger Count Data</atitle><jtitle>Transportation research record</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2143</volume><issue>1</issue><spage>9</spage><epage>15</epage><pages>9-15</pages><issn>0361-1981</issn><eissn>2169-4052</eissn><abstract>Automatic vehicle location (AVL) and automatic passenger counting (APC) systems can provide rich archived databases for analysis. Previous work has focused on using AVL–APC data to evaluate system performance using various quantitative performance measures and data visualization methods. Given the large volume of data, there is a benefit to automating the creation of performance measures and data visualizations and “pushing” interesting information to users, rather than requiring users to create the performance measures and figures and sift through them on their own. This paper presents a methodology for identifying bus stops that are not meeting performance standards for schedule adherence and the factors that cause inadequate performance. The methodology is designed to be automated and therefore can be applied efficiently to AVL–APC data for an entire transit network. Use of this proposed method will enable transit agencies to identify service quality issues and their root causes more efficiently.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3141/2143-02</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0361-1981
ispartof Transportation research record, 2010-01, Vol.2143 (1), p.9-15
issn 0361-1981
2169-4052
language eng
recordid cdi_crossref_primary_10_3141_2143_02
source SAGE Complete
title Identifying Causes of Performance Issues in Bus Schedule Adherence with Automatic Vehicle Location and Passenger Count Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T15%3A39%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20Causes%20of%20Performance%20Issues%20in%20Bus%20Schedule%20Adherence%20with%20Automatic%20Vehicle%20Location%20and%20Passenger%20Count%20Data&rft.jtitle=Transportation%20research%20record&rft.au=Mandelzys,%20Michael&rft.date=2010-01-01&rft.volume=2143&rft.issue=1&rft.spage=9&rft.epage=15&rft.pages=9-15&rft.issn=0361-1981&rft.eissn=2169-4052&rft_id=info:doi/10.3141/2143-02&rft_dat=%3Csage_cross%3E10.3141_2143-02%3C/sage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.3141_2143-02&rfr_iscdi=true