"Full-Core" VVER-1000 calculation benchmark

This work deals with the \Full-Core" VVER-1000 calculation benchmark which was proposed on the 26 Symposium of AER [1]. Recently, the calculation benchmarks \Full-Core" VVER-440 [2] and its extension [3] have been introduced in the AER community with positive response [4, 5]. Therefore we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kerntechnik (1987) 2020-09, Vol.85 (4), p.231-244
Hauptverfasser: Sprinzl, Daniel, Krysl, Václav, Mikoláš, Pavel, Závorka, Jiří, Tímr, Jan, Bilodid, Yurii, Temesvari, Emese, Pós, István, Kalinin, Yuriy, Shcherenko, Anna, Aleshin, Sergey, Bahadir, Tamer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 244
container_issue 4
container_start_page 231
container_title Kerntechnik (1987)
container_volume 85
creator Sprinzl, Daniel
Krysl, Václav
Mikoláš, Pavel
Závorka, Jiří
Tímr, Jan
Bilodid, Yurii
Temesvari, Emese
Pós, István
Kalinin, Yuriy
Shcherenko, Anna
Aleshin, Sergey
Bahadir, Tamer
description This work deals with the \Full-Core" VVER-1000 calculation benchmark which was proposed on the 26 Symposium of AER [1]. Recently, the calculation benchmarks \Full-Core" VVER-440 [2] and its extension [3] have been introduced in the AER community with positive response [4, 5]. Therefore we have decided to prepare a similar benchmark for VVER- 1000. This benchmark is also a 2D calculation benchmark based on the VVER-1000 reactor core cold state geometry, explicitly taking into account the geometry of the radial reflector. The loading pattern for this core is very similar to the fresh fuel loading of cycle 9 at Unit 1 of the Temelin NPP (Czech Republic). This core is filled with six types of fuel assemblies with enrichment from 1.3%w U to 4.0%w U with up to 9 fuel pins with Gd burnable absorber per FA. The main task of this benchmark is to test the pin-by-pin power distribution in fuel assemblies predicted by macro-codes that are used for neutron- physics calculations especially for VVER reactors. In this contribution we present the overview of available macro-codes results.
doi_str_mv 10.3139/124.200023
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3139_124_200023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3139_124_200023854231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c280t-9bb618503750cc327893177b1c32fe840e3b2e3fe0ee094a0dff9948a78f0cec3</originalsourceid><addsrcrecordid>eNptj09LAzEQxYMouNRe_ARLj0rq5F-THGVpq1AQRHsN2XSirWtXsrtIv72R9ehpHvN-M7xHyDWDuWDC3jEu5xwAuDgjBWdWUaMMnJMCrOBUWOCXZNp1h4zAgmsloSC3s9XQNLRqE87K7Xb5TFl2y-CbMDS-37fHssZjeP_06eOKXETfdDj9mxPyulq-VA9087R-rO43NHADPbV1vWBGgdAKQhBcGyuY1jXLOqKRgKLmKCICIljpYRejtdJ4bSIEDGJCbsa_IbVdlzC6r7TPAU6Ogftt6nJTNzbNsBnhb9_0mHb4loZTFu7QDumYY_5zZJTkefUD_stT-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>"Full-Core" VVER-1000 calculation benchmark</title><source>De Gruyter journals</source><creator>Sprinzl, Daniel ; Krysl, Václav ; Mikoláš, Pavel ; Závorka, Jiří ; Tímr, Jan ; Bilodid, Yurii ; Temesvari, Emese ; Pós, István ; Kalinin, Yuriy ; Shcherenko, Anna ; Aleshin, Sergey ; Bahadir, Tamer</creator><creatorcontrib>Sprinzl, Daniel ; Krysl, Václav ; Mikoláš, Pavel ; Závorka, Jiří ; Tímr, Jan ; Bilodid, Yurii ; Temesvari, Emese ; Pós, István ; Kalinin, Yuriy ; Shcherenko, Anna ; Aleshin, Sergey ; Bahadir, Tamer</creatorcontrib><description>This work deals with the \Full-Core" VVER-1000 calculation benchmark which was proposed on the 26 Symposium of AER [1]. Recently, the calculation benchmarks \Full-Core" VVER-440 [2] and its extension [3] have been introduced in the AER community with positive response [4, 5]. Therefore we have decided to prepare a similar benchmark for VVER- 1000. This benchmark is also a 2D calculation benchmark based on the VVER-1000 reactor core cold state geometry, explicitly taking into account the geometry of the radial reflector. The loading pattern for this core is very similar to the fresh fuel loading of cycle 9 at Unit 1 of the Temelin NPP (Czech Republic). This core is filled with six types of fuel assemblies with enrichment from 1.3%w U to 4.0%w U with up to 9 fuel pins with Gd burnable absorber per FA. The main task of this benchmark is to test the pin-by-pin power distribution in fuel assemblies predicted by macro-codes that are used for neutron- physics calculations especially for VVER reactors. In this contribution we present the overview of available macro-codes results.</description><identifier>ISSN: 0932-3902</identifier><identifier>EISSN: 2195-8580</identifier><identifier>DOI: 10.3139/124.200023</identifier><language>eng</language><publisher>De Gruyter</publisher><ispartof>Kerntechnik (1987), 2020-09, Vol.85 (4), p.231-244</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c280t-9bb618503750cc327893177b1c32fe840e3b2e3fe0ee094a0dff9948a78f0cec3</citedby><cites>FETCH-LOGICAL-c280t-9bb618503750cc327893177b1c32fe840e3b2e3fe0ee094a0dff9948a78f0cec3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.3139/124.200023/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.3139/124.200023/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,66754,68538</link.rule.ids></links><search><creatorcontrib>Sprinzl, Daniel</creatorcontrib><creatorcontrib>Krysl, Václav</creatorcontrib><creatorcontrib>Mikoláš, Pavel</creatorcontrib><creatorcontrib>Závorka, Jiří</creatorcontrib><creatorcontrib>Tímr, Jan</creatorcontrib><creatorcontrib>Bilodid, Yurii</creatorcontrib><creatorcontrib>Temesvari, Emese</creatorcontrib><creatorcontrib>Pós, István</creatorcontrib><creatorcontrib>Kalinin, Yuriy</creatorcontrib><creatorcontrib>Shcherenko, Anna</creatorcontrib><creatorcontrib>Aleshin, Sergey</creatorcontrib><creatorcontrib>Bahadir, Tamer</creatorcontrib><title>"Full-Core" VVER-1000 calculation benchmark</title><title>Kerntechnik (1987)</title><description>This work deals with the \Full-Core" VVER-1000 calculation benchmark which was proposed on the 26 Symposium of AER [1]. Recently, the calculation benchmarks \Full-Core" VVER-440 [2] and its extension [3] have been introduced in the AER community with positive response [4, 5]. Therefore we have decided to prepare a similar benchmark for VVER- 1000. This benchmark is also a 2D calculation benchmark based on the VVER-1000 reactor core cold state geometry, explicitly taking into account the geometry of the radial reflector. The loading pattern for this core is very similar to the fresh fuel loading of cycle 9 at Unit 1 of the Temelin NPP (Czech Republic). This core is filled with six types of fuel assemblies with enrichment from 1.3%w U to 4.0%w U with up to 9 fuel pins with Gd burnable absorber per FA. The main task of this benchmark is to test the pin-by-pin power distribution in fuel assemblies predicted by macro-codes that are used for neutron- physics calculations especially for VVER reactors. In this contribution we present the overview of available macro-codes results.</description><issn>0932-3902</issn><issn>2195-8580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNptj09LAzEQxYMouNRe_ARLj0rq5F-THGVpq1AQRHsN2XSirWtXsrtIv72R9ehpHvN-M7xHyDWDuWDC3jEu5xwAuDgjBWdWUaMMnJMCrOBUWOCXZNp1h4zAgmsloSC3s9XQNLRqE87K7Xb5TFl2y-CbMDS-37fHssZjeP_06eOKXETfdDj9mxPyulq-VA9087R-rO43NHADPbV1vWBGgdAKQhBcGyuY1jXLOqKRgKLmKCICIljpYRejtdJ4bSIEDGJCbsa_IbVdlzC6r7TPAU6Ogftt6nJTNzbNsBnhb9_0mHb4loZTFu7QDumYY_5zZJTkefUD_stT-g</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Sprinzl, Daniel</creator><creator>Krysl, Václav</creator><creator>Mikoláš, Pavel</creator><creator>Závorka, Jiří</creator><creator>Tímr, Jan</creator><creator>Bilodid, Yurii</creator><creator>Temesvari, Emese</creator><creator>Pós, István</creator><creator>Kalinin, Yuriy</creator><creator>Shcherenko, Anna</creator><creator>Aleshin, Sergey</creator><creator>Bahadir, Tamer</creator><general>De Gruyter</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200901</creationdate><title>"Full-Core" VVER-1000 calculation benchmark</title><author>Sprinzl, Daniel ; Krysl, Václav ; Mikoláš, Pavel ; Závorka, Jiří ; Tímr, Jan ; Bilodid, Yurii ; Temesvari, Emese ; Pós, István ; Kalinin, Yuriy ; Shcherenko, Anna ; Aleshin, Sergey ; Bahadir, Tamer</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c280t-9bb618503750cc327893177b1c32fe840e3b2e3fe0ee094a0dff9948a78f0cec3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sprinzl, Daniel</creatorcontrib><creatorcontrib>Krysl, Václav</creatorcontrib><creatorcontrib>Mikoláš, Pavel</creatorcontrib><creatorcontrib>Závorka, Jiří</creatorcontrib><creatorcontrib>Tímr, Jan</creatorcontrib><creatorcontrib>Bilodid, Yurii</creatorcontrib><creatorcontrib>Temesvari, Emese</creatorcontrib><creatorcontrib>Pós, István</creatorcontrib><creatorcontrib>Kalinin, Yuriy</creatorcontrib><creatorcontrib>Shcherenko, Anna</creatorcontrib><creatorcontrib>Aleshin, Sergey</creatorcontrib><creatorcontrib>Bahadir, Tamer</creatorcontrib><collection>CrossRef</collection><jtitle>Kerntechnik (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sprinzl, Daniel</au><au>Krysl, Václav</au><au>Mikoláš, Pavel</au><au>Závorka, Jiří</au><au>Tímr, Jan</au><au>Bilodid, Yurii</au><au>Temesvari, Emese</au><au>Pós, István</au><au>Kalinin, Yuriy</au><au>Shcherenko, Anna</au><au>Aleshin, Sergey</au><au>Bahadir, Tamer</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>"Full-Core" VVER-1000 calculation benchmark</atitle><jtitle>Kerntechnik (1987)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>85</volume><issue>4</issue><spage>231</spage><epage>244</epage><pages>231-244</pages><issn>0932-3902</issn><eissn>2195-8580</eissn><abstract>This work deals with the \Full-Core" VVER-1000 calculation benchmark which was proposed on the 26 Symposium of AER [1]. Recently, the calculation benchmarks \Full-Core" VVER-440 [2] and its extension [3] have been introduced in the AER community with positive response [4, 5]. Therefore we have decided to prepare a similar benchmark for VVER- 1000. This benchmark is also a 2D calculation benchmark based on the VVER-1000 reactor core cold state geometry, explicitly taking into account the geometry of the radial reflector. The loading pattern for this core is very similar to the fresh fuel loading of cycle 9 at Unit 1 of the Temelin NPP (Czech Republic). This core is filled with six types of fuel assemblies with enrichment from 1.3%w U to 4.0%w U with up to 9 fuel pins with Gd burnable absorber per FA. The main task of this benchmark is to test the pin-by-pin power distribution in fuel assemblies predicted by macro-codes that are used for neutron- physics calculations especially for VVER reactors. In this contribution we present the overview of available macro-codes results.</abstract><pub>De Gruyter</pub><doi>10.3139/124.200023</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-3902
ispartof Kerntechnik (1987), 2020-09, Vol.85 (4), p.231-244
issn 0932-3902
2195-8580
language eng
recordid cdi_crossref_primary_10_3139_124_200023
source De Gruyter journals
title "Full-Core" VVER-1000 calculation benchmark
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%22Full-Core%22%20VVER-1000%20calculation%20benchmark&rft.jtitle=Kerntechnik%20(1987)&rft.au=Sprinzl,%20Daniel&rft.date=2020-09-01&rft.volume=85&rft.issue=4&rft.spage=231&rft.epage=244&rft.pages=231-244&rft.issn=0932-3902&rft.eissn=2195-8580&rft_id=info:doi/10.3139/124.200023&rft_dat=%3Cwalterdegruyter_cross%3E10_3139_124_200023854231%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true