Positive temperature reactivity coefficient of a TRIGA reactor at room temperature

A positive isothermal temperature reactivity coefficient has been measured at zero power conditions at the TRIGA research reactor of the J. Stefan Institute in Ljubljana. The coefficient is measured in a critical reactor for different core configurations at room temperature and at low power. The rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kerntechnik (1987) 2005-08, Vol.70 (4), p.223-229
Hauptverfasser: Žagar, T., Ravnik, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 4
container_start_page 223
container_title Kerntechnik (1987)
container_volume 70
creator Žagar, T.
Ravnik, M.
description A positive isothermal temperature reactivity coefficient has been measured at zero power conditions at the TRIGA research reactor of the J. Stefan Institute in Ljubljana. The coefficient is measured in a critical reactor for different core configurations at room temperature and at low power. The reactor is filled with standard, 20 % enriched, fuel elements containing 12 wt % uranium with 6 % average burn-up. The experiments are analysed by reactor calculations using WIMSD code to provide the reactor physics explanations of the results measured. The positive temperature reactivity effect can be explained by reduced absorption in water prevailing at low fuel temperature over negative temperature effects on the reactivity in the fuel elements. The positive effect is due to the thermal spectrum shift in water and is not the consequence of a change in water density. The positive effect decreases with increasing temperature. The negative reactivity effect in fuel prevails at fuel temperatures above 50°C. The positive isothermal temperature reactivity coefficient has no effect on normal reactor operation in steady state and pulse mode.
doi_str_mv 10.3139/124.100249
format Article
fullrecord <record><control><sourceid>walterdegruyter_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3139_124_100249</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3139_124_100249704223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c310t-dd485ddc0c85b6a400bf42918ab2b0a0e050124f88072bd7e6c742b1fb5c0ec43</originalsourceid><addsrcrecordid>eNptkE9LAzEQxYMoWGovfoJcvAhbJ3-2mxxL0VooKKWelySbSErblCRV9tsbWUEPzmWG4fcevIfQLYEpI0w-EMqnBIByeYFGlMi6ErWASzQCyWjFJNBrNElpB2VmtKk5jNDmNSSf_YfF2R5ONqp8jhZHq0x5-txjE6xz3nh7zDg4rPB2s1rOByJErDKOIRz-qm_QlVP7ZCc_e4zenh63i-dq_bJcLebryjACueo6LuquM2BErWeKA2jHqSRCaapBgYUaSiInBDRUd42dmYZTTZyuDVjD2RjdD74mhpSide0p-oOKfUug_S6kLfJ2KKTAdwN8UsmovYvqaHz6VTTAGJOicGLgPtU-29jZ93juy9HuwjkeS5x_zBvglDL2BVmmcaU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Positive temperature reactivity coefficient of a TRIGA reactor at room temperature</title><source>De Gruyter journals</source><creator>Žagar, T. ; Ravnik, M.</creator><creatorcontrib>Žagar, T. ; Ravnik, M.</creatorcontrib><description>A positive isothermal temperature reactivity coefficient has been measured at zero power conditions at the TRIGA research reactor of the J. Stefan Institute in Ljubljana. The coefficient is measured in a critical reactor for different core configurations at room temperature and at low power. The reactor is filled with standard, 20 % enriched, fuel elements containing 12 wt % uranium with 6 % average burn-up. The experiments are analysed by reactor calculations using WIMSD code to provide the reactor physics explanations of the results measured. The positive temperature reactivity effect can be explained by reduced absorption in water prevailing at low fuel temperature over negative temperature effects on the reactivity in the fuel elements. The positive effect is due to the thermal spectrum shift in water and is not the consequence of a change in water density. The positive effect decreases with increasing temperature. The negative reactivity effect in fuel prevails at fuel temperatures above 50°C. The positive isothermal temperature reactivity coefficient has no effect on normal reactor operation in steady state and pulse mode.</description><identifier>ISSN: 0932-3902</identifier><identifier>EISSN: 2195-8580</identifier><identifier>DOI: 10.3139/124.100249</identifier><language>eng</language><publisher>München: De Gruyter</publisher><subject>Applied sciences ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fission nuclear power plants ; Fuels ; Installations for energy generation and conversion: thermal and electrical energy ; Nuclear fuels</subject><ispartof>Kerntechnik (1987), 2005-08, Vol.70 (4), p.223-229</ispartof><rights>2005 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c310t-dd485ddc0c85b6a400bf42918ab2b0a0e050124f88072bd7e6c742b1fb5c0ec43</citedby><cites>FETCH-LOGICAL-c310t-dd485ddc0c85b6a400bf42918ab2b0a0e050124f88072bd7e6c742b1fb5c0ec43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.3139/124.100249/pdf$$EPDF$$P50$$Gwalterdegruyter$$H</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.3139/124.100249/html$$EHTML$$P50$$Gwalterdegruyter$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,66500,68284</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17033398$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Žagar, T.</creatorcontrib><creatorcontrib>Ravnik, M.</creatorcontrib><title>Positive temperature reactivity coefficient of a TRIGA reactor at room temperature</title><title>Kerntechnik (1987)</title><description>A positive isothermal temperature reactivity coefficient has been measured at zero power conditions at the TRIGA research reactor of the J. Stefan Institute in Ljubljana. The coefficient is measured in a critical reactor for different core configurations at room temperature and at low power. The reactor is filled with standard, 20 % enriched, fuel elements containing 12 wt % uranium with 6 % average burn-up. The experiments are analysed by reactor calculations using WIMSD code to provide the reactor physics explanations of the results measured. The positive temperature reactivity effect can be explained by reduced absorption in water prevailing at low fuel temperature over negative temperature effects on the reactivity in the fuel elements. The positive effect is due to the thermal spectrum shift in water and is not the consequence of a change in water density. The positive effect decreases with increasing temperature. The negative reactivity effect in fuel prevails at fuel temperatures above 50°C. The positive isothermal temperature reactivity coefficient has no effect on normal reactor operation in steady state and pulse mode.</description><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fission nuclear power plants</subject><subject>Fuels</subject><subject>Installations for energy generation and conversion: thermal and electrical energy</subject><subject>Nuclear fuels</subject><issn>0932-3902</issn><issn>2195-8580</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNptkE9LAzEQxYMoWGovfoJcvAhbJ3-2mxxL0VooKKWelySbSErblCRV9tsbWUEPzmWG4fcevIfQLYEpI0w-EMqnBIByeYFGlMi6ErWASzQCyWjFJNBrNElpB2VmtKk5jNDmNSSf_YfF2R5ONqp8jhZHq0x5-txjE6xz3nh7zDg4rPB2s1rOByJErDKOIRz-qm_QlVP7ZCc_e4zenh63i-dq_bJcLebryjACueo6LuquM2BErWeKA2jHqSRCaapBgYUaSiInBDRUd42dmYZTTZyuDVjD2RjdD74mhpSide0p-oOKfUug_S6kLfJ2KKTAdwN8UsmovYvqaHz6VTTAGJOicGLgPtU-29jZ93juy9HuwjkeS5x_zBvglDL2BVmmcaU</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Žagar, T.</creator><creator>Ravnik, M.</creator><general>De Gruyter</general><general>Hanser</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20050801</creationdate><title>Positive temperature reactivity coefficient of a TRIGA reactor at room temperature</title><author>Žagar, T. ; Ravnik, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c310t-dd485ddc0c85b6a400bf42918ab2b0a0e050124f88072bd7e6c742b1fb5c0ec43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fission nuclear power plants</topic><topic>Fuels</topic><topic>Installations for energy generation and conversion: thermal and electrical energy</topic><topic>Nuclear fuels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Žagar, T.</creatorcontrib><creatorcontrib>Ravnik, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Kerntechnik (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Žagar, T.</au><au>Ravnik, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive temperature reactivity coefficient of a TRIGA reactor at room temperature</atitle><jtitle>Kerntechnik (1987)</jtitle><date>2005-08-01</date><risdate>2005</risdate><volume>70</volume><issue>4</issue><spage>223</spage><epage>229</epage><pages>223-229</pages><issn>0932-3902</issn><eissn>2195-8580</eissn><abstract>A positive isothermal temperature reactivity coefficient has been measured at zero power conditions at the TRIGA research reactor of the J. Stefan Institute in Ljubljana. The coefficient is measured in a critical reactor for different core configurations at room temperature and at low power. The reactor is filled with standard, 20 % enriched, fuel elements containing 12 wt % uranium with 6 % average burn-up. The experiments are analysed by reactor calculations using WIMSD code to provide the reactor physics explanations of the results measured. The positive temperature reactivity effect can be explained by reduced absorption in water prevailing at low fuel temperature over negative temperature effects on the reactivity in the fuel elements. The positive effect is due to the thermal spectrum shift in water and is not the consequence of a change in water density. The positive effect decreases with increasing temperature. The negative reactivity effect in fuel prevails at fuel temperatures above 50°C. The positive isothermal temperature reactivity coefficient has no effect on normal reactor operation in steady state and pulse mode.</abstract><cop>München</cop><pub>De Gruyter</pub><doi>10.3139/124.100249</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0932-3902
ispartof Kerntechnik (1987), 2005-08, Vol.70 (4), p.223-229
issn 0932-3902
2195-8580
language eng
recordid cdi_crossref_primary_10_3139_124_100249
source De Gruyter journals
subjects Applied sciences
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
title Positive temperature reactivity coefficient of a TRIGA reactor at room temperature
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T21%3A46%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-walterdegruyter_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20temperature%20reactivity%20coefficient%20of%20a%20TRIGA%20reactor%20at%20room%20temperature&rft.jtitle=Kerntechnik%20(1987)&rft.au=%C5%BDagar,%20T.&rft.date=2005-08-01&rft.volume=70&rft.issue=4&rft.spage=223&rft.epage=229&rft.pages=223-229&rft.issn=0932-3902&rft.eissn=2195-8580&rft_id=info:doi/10.3139/124.100249&rft_dat=%3Cwalterdegruyter_cross%3E10_3139_124_100249704223%3C/walterdegruyter_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true