Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province

In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the cours...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista mexicana de física 2021-01, Vol.67 (1 Jan-Feb), p.123-136
Hauptverfasser: Ramirez-Torres, E. E., Selva Castañeda, A. R., Rodríguez-Aldana, Y., Sánchez Domínguez, S., Valdés García, L. E., Palú-Orozco, A., Oliveros-Domínguez, E.R., Zamora-Matamoros, L., Labrada-Claro, R., Cobas-Batista, M., Sedal-Yanes, D., Soler-Nariño, O., Valdés-Sosa, P. A., Montijano, J. I., Bergues Cabrales, L. E.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 136
container_issue 1 Jan-Feb
container_start_page 123
container_title Revista mexicana de física
container_volume 67
creator Ramirez-Torres, E. E.
Selva Castañeda, A. R.
Rodríguez-Aldana, Y.
Sánchez Domínguez, S.
Valdés García, L. E.
Palú-Orozco, A.
Oliveros-Domínguez, E.R.
Zamora-Matamoros, L.
Labrada-Claro, R.
Cobas-Batista, M.
Sedal-Yanes, D.
Soler-Nariño, O.
Valdés-Sosa, P. A.
Montijano, J. I.
Bergues Cabrales, L. E.
description In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted 57 reported cases and 16 unreported cases. Additionally, it estimated six initially exposed persons. The second model forecasted 51 confirmed cases at the end of the epidemic. In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.
doi_str_mv 10.31349/RevMexFis.67.123
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31349_RevMexFis_67_123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31349_RevMexFis_67_123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-3a9b194659793e6796c81656ff9c1d43b4d2b01a730f8e1af417e39aa8cf97663</originalsourceid><addsrcrecordid>eNo9kM1KAzEURoMoWKsP4C4vMDU3mSYTdzJaLbQU_EPcDHcyNzXSzpRkLPXtrT-4-jh8cBaHsXMQIwUqtxf3tJ3TbhLSSJsRSHXABlIXKpNS5odsIIQaZ0LAyzE7Sen9G6UQA_Y6x_6N1tgHhyu-7hpahXbJsW247yI5TP03d56Xi-fpdQb2ktNuQzFQ64iHlj9g2wdcdrwhXn7UyDex24b9ecqOPK4Snf3tkD1Nbh7Lu2y2uJ2WV7PMyaLoM4W2BpvrsTVWkTZWuwL0WHtvHTS5qvNG1gLQKOELAvQ5GFIWsXDeGq3VkMGv18UupUi-2sSwxvhZgah-4lT_cSptqn0c9QUU6Vmi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Ramirez-Torres, E. E. ; Selva Castañeda, A. R. ; Rodríguez-Aldana, Y. ; Sánchez Domínguez, S. ; Valdés García, L. E. ; Palú-Orozco, A. ; Oliveros-Domínguez, E.R. ; Zamora-Matamoros, L. ; Labrada-Claro, R. ; Cobas-Batista, M. ; Sedal-Yanes, D. ; Soler-Nariño, O. ; Valdés-Sosa, P. A. ; Montijano, J. I. ; Bergues Cabrales, L. E.</creator><creatorcontrib>Ramirez-Torres, E. E. ; Selva Castañeda, A. R. ; Rodríguez-Aldana, Y. ; Sánchez Domínguez, S. ; Valdés García, L. E. ; Palú-Orozco, A. ; Oliveros-Domínguez, E.R. ; Zamora-Matamoros, L. ; Labrada-Claro, R. ; Cobas-Batista, M. ; Sedal-Yanes, D. ; Soler-Nariño, O. ; Valdés-Sosa, P. A. ; Montijano, J. I. ; Bergues Cabrales, L. E.</creatorcontrib><description>In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted 57 reported cases and 16 unreported cases. Additionally, it estimated six initially exposed persons. The second model forecasted 51 confirmed cases at the end of the epidemic. In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.</description><identifier>ISSN: 0035-001X</identifier><identifier>EISSN: 2683-2224</identifier><identifier>DOI: 10.31349/RevMexFis.67.123</identifier><language>eng</language><ispartof>Revista mexicana de física, 2021-01, Vol.67 (1 Jan-Feb), p.123-136</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-3a9b194659793e6796c81656ff9c1d43b4d2b01a730f8e1af417e39aa8cf97663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27926,27927</link.rule.ids></links><search><creatorcontrib>Ramirez-Torres, E. E.</creatorcontrib><creatorcontrib>Selva Castañeda, A. R.</creatorcontrib><creatorcontrib>Rodríguez-Aldana, Y.</creatorcontrib><creatorcontrib>Sánchez Domínguez, S.</creatorcontrib><creatorcontrib>Valdés García, L. E.</creatorcontrib><creatorcontrib>Palú-Orozco, A.</creatorcontrib><creatorcontrib>Oliveros-Domínguez, E.R.</creatorcontrib><creatorcontrib>Zamora-Matamoros, L.</creatorcontrib><creatorcontrib>Labrada-Claro, R.</creatorcontrib><creatorcontrib>Cobas-Batista, M.</creatorcontrib><creatorcontrib>Sedal-Yanes, D.</creatorcontrib><creatorcontrib>Soler-Nariño, O.</creatorcontrib><creatorcontrib>Valdés-Sosa, P. A.</creatorcontrib><creatorcontrib>Montijano, J. I.</creatorcontrib><creatorcontrib>Bergues Cabrales, L. E.</creatorcontrib><title>Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province</title><title>Revista mexicana de física</title><description>In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted 57 reported cases and 16 unreported cases. Additionally, it estimated six initially exposed persons. The second model forecasted 51 confirmed cases at the end of the epidemic. In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.</description><issn>0035-001X</issn><issn>2683-2224</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kM1KAzEURoMoWKsP4C4vMDU3mSYTdzJaLbQU_EPcDHcyNzXSzpRkLPXtrT-4-jh8cBaHsXMQIwUqtxf3tJ3TbhLSSJsRSHXABlIXKpNS5odsIIQaZ0LAyzE7Sen9G6UQA_Y6x_6N1tgHhyu-7hpahXbJsW247yI5TP03d56Xi-fpdQb2ktNuQzFQ64iHlj9g2wdcdrwhXn7UyDex24b9ecqOPK4Snf3tkD1Nbh7Lu2y2uJ2WV7PMyaLoM4W2BpvrsTVWkTZWuwL0WHtvHTS5qvNG1gLQKOELAvQ5GFIWsXDeGq3VkMGv18UupUi-2sSwxvhZgah-4lT_cSptqn0c9QUU6Vmi</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ramirez-Torres, E. E.</creator><creator>Selva Castañeda, A. R.</creator><creator>Rodríguez-Aldana, Y.</creator><creator>Sánchez Domínguez, S.</creator><creator>Valdés García, L. E.</creator><creator>Palú-Orozco, A.</creator><creator>Oliveros-Domínguez, E.R.</creator><creator>Zamora-Matamoros, L.</creator><creator>Labrada-Claro, R.</creator><creator>Cobas-Batista, M.</creator><creator>Sedal-Yanes, D.</creator><creator>Soler-Nariño, O.</creator><creator>Valdés-Sosa, P. A.</creator><creator>Montijano, J. I.</creator><creator>Bergues Cabrales, L. E.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province</title><author>Ramirez-Torres, E. E. ; Selva Castañeda, A. R. ; Rodríguez-Aldana, Y. ; Sánchez Domínguez, S. ; Valdés García, L. E. ; Palú-Orozco, A. ; Oliveros-Domínguez, E.R. ; Zamora-Matamoros, L. ; Labrada-Claro, R. ; Cobas-Batista, M. ; Sedal-Yanes, D. ; Soler-Nariño, O. ; Valdés-Sosa, P. A. ; Montijano, J. I. ; Bergues Cabrales, L. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-3a9b194659793e6796c81656ff9c1d43b4d2b01a730f8e1af417e39aa8cf97663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Torres, E. E.</creatorcontrib><creatorcontrib>Selva Castañeda, A. R.</creatorcontrib><creatorcontrib>Rodríguez-Aldana, Y.</creatorcontrib><creatorcontrib>Sánchez Domínguez, S.</creatorcontrib><creatorcontrib>Valdés García, L. E.</creatorcontrib><creatorcontrib>Palú-Orozco, A.</creatorcontrib><creatorcontrib>Oliveros-Domínguez, E.R.</creatorcontrib><creatorcontrib>Zamora-Matamoros, L.</creatorcontrib><creatorcontrib>Labrada-Claro, R.</creatorcontrib><creatorcontrib>Cobas-Batista, M.</creatorcontrib><creatorcontrib>Sedal-Yanes, D.</creatorcontrib><creatorcontrib>Soler-Nariño, O.</creatorcontrib><creatorcontrib>Valdés-Sosa, P. A.</creatorcontrib><creatorcontrib>Montijano, J. I.</creatorcontrib><creatorcontrib>Bergues Cabrales, L. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Revista mexicana de física</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramirez-Torres, E. E.</au><au>Selva Castañeda, A. R.</au><au>Rodríguez-Aldana, Y.</au><au>Sánchez Domínguez, S.</au><au>Valdés García, L. E.</au><au>Palú-Orozco, A.</au><au>Oliveros-Domínguez, E.R.</au><au>Zamora-Matamoros, L.</au><au>Labrada-Claro, R.</au><au>Cobas-Batista, M.</au><au>Sedal-Yanes, D.</au><au>Soler-Nariño, O.</au><au>Valdés-Sosa, P. A.</au><au>Montijano, J. I.</au><au>Bergues Cabrales, L. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province</atitle><jtitle>Revista mexicana de física</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>67</volume><issue>1 Jan-Feb</issue><spage>123</spage><epage>136</epage><pages>123-136</pages><issn>0035-001X</issn><eissn>2683-2224</eissn><abstract>In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted 57 reported cases and 16 unreported cases. Additionally, it estimated six initially exposed persons. The second model forecasted 51 confirmed cases at the end of the epidemic. In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.</abstract><doi>10.31349/RevMexFis.67.123</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-001X
ispartof Revista mexicana de física, 2021-01, Vol.67 (1 Jan-Feb), p.123-136
issn 0035-001X
2683-2224
language eng
recordid cdi_crossref_primary_10_31349_RevMexFis_67_123
source EZB-FREE-00999 freely available EZB journals
title Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T00%3A37%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20modeling%20and%20forecasting%20of%20COVID-19:%20experience%20in%20Santiago%20de%20Cuba%20province&rft.jtitle=Revista%20mexicana%20de%20f%C3%ADsica&rft.au=Ramirez-Torres,%20E.%20E.&rft.date=2021-01-01&rft.volume=67&rft.issue=1%20Jan-Feb&rft.spage=123&rft.epage=136&rft.pages=123-136&rft.issn=0035-001X&rft.eissn=2683-2224&rft_id=info:doi/10.31349/RevMexFis.67.123&rft_dat=%3Ccrossref%3E10_31349_RevMexFis_67_123%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true