Design Chart for Trochoidal Vacuum Analyzer
Design charts for trochoidal mass spectrometer as a vacuum analyzer are made for rational determination of the electrode dimension. The fundamental charts, Figs. 3, 4, 5 and 6, are calculated by Eqs. (4), (5), (6) and (7), where notations used are shown in Fig. 2. β is a coefficient defined as β=Vo/...
Gespeichert in:
Veröffentlicht in: | SHINKU 1962/12/20, Vol.5(12), pp.492-502 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 12 |
container_start_page | 492 |
container_title | SHINKU |
container_volume | 5 |
creator | TOMINAGA, Goroh TUZI, Yutaka |
description | Design charts for trochoidal mass spectrometer as a vacuum analyzer are made for rational determination of the electrode dimension. The fundamental charts, Figs. 3, 4, 5 and 6, are calculated by Eqs. (4), (5), (6) and (7), where notations used are shown in Fig. 2. β is a coefficient defined as β=Vo/Ep, where Vo, E and p represent the accelerating voltage of ion, the strength of electric field and the distance between do and dn (refer to Fig. 2), respectively. The spreads X and Y of ion beam, in x and y directions can be obtained from these figures as functions of β and θ. For example, considering the the conditions Xmax =Ymax and θ≤135°, the relations among (X/a) max (= (Y/a) max), pβ/a and (s/a) min are then given, in Fig. 8. From this figure, optimum value for a (i. e. b) corresponding to any value of Xmax/smin can be odtained. Table 1 shows a typical example of electrode design under the above condition. Use of Figs. 3, 4, 5, and 6 also makes it easy to draw the path of ion beam. |
doi_str_mv | 10.3131/jvsj.5.492 |
format | Article |
fullrecord | <record><control><sourceid>jstage_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3131_jvsj_5_492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>article_jvsj1958_5_12_5_12_492_article_char_en</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2592-73fd4b2f3a4c516a7cde17fb94dd890aff4b88a6eb17bfa50ddde04c82c7b0603</originalsourceid><addsrcrecordid>eNo9j01Lw0AURQdRMNRu_AVZK4nzmcwsS6pVKLipbof5bBPSRGZaof56p0a6eW_xzruXA8A9giVBBD1137ErWUkFvgIZ4hwWgiJyDTLImCg4Q9UtmMfYakgIhZBRloHHpYvtdsibnQqH3I8h34TR7MbWqj7_VOZ43OeLQfWnHxfuwI1XfXTz_z0DHy_Pm-a1WL-v3prFujCYCVzUxFuqsSeKmtSpamMdqr0W1FouoPKeas5V5TSqtVcMWmsdpIZjU2tYQTIDD1OuCWOMwXn5Fdq9CieJoDybyrOpZDKZJng5wV08qK27oEmnNb37Q5FgPOEITyO9Xc4meUs3kF8-SF9b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Design Chart for Trochoidal Vacuum Analyzer</title><source>J-STAGE Free</source><creator>TOMINAGA, Goroh ; TUZI, Yutaka</creator><creatorcontrib>TOMINAGA, Goroh ; TUZI, Yutaka</creatorcontrib><description>Design charts for trochoidal mass spectrometer as a vacuum analyzer are made for rational determination of the electrode dimension. The fundamental charts, Figs. 3, 4, 5 and 6, are calculated by Eqs. (4), (5), (6) and (7), where notations used are shown in Fig. 2. β is a coefficient defined as β=Vo/Ep, where Vo, E and p represent the accelerating voltage of ion, the strength of electric field and the distance between do and dn (refer to Fig. 2), respectively. The spreads X and Y of ion beam, in x and y directions can be obtained from these figures as functions of β and θ. For example, considering the the conditions Xmax =Ymax and θ≤135°, the relations among (X/a) max (= (Y/a) max), pβ/a and (s/a) min are then given, in Fig. 8. From this figure, optimum value for a (i. e. b) corresponding to any value of Xmax/smin can be odtained. Table 1 shows a typical example of electrode design under the above condition. Use of Figs. 3, 4, 5, and 6 also makes it easy to draw the path of ion beam.</description><identifier>ISSN: 0559-8516</identifier><identifier>EISSN: 1880-9413</identifier><identifier>DOI: 10.3131/jvsj.5.492</identifier><language>eng</language><publisher>The Vacuum Society of Japan</publisher><ispartof>Shinku, 1962/12/20, Vol.5(12), pp.492-502</ispartof><rights>The Vacuum Society of Japan</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1881,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>TOMINAGA, Goroh</creatorcontrib><creatorcontrib>TUZI, Yutaka</creatorcontrib><title>Design Chart for Trochoidal Vacuum Analyzer</title><title>SHINKU</title><addtitle>J. Vac. Soc. Jpn.</addtitle><description>Design charts for trochoidal mass spectrometer as a vacuum analyzer are made for rational determination of the electrode dimension. The fundamental charts, Figs. 3, 4, 5 and 6, are calculated by Eqs. (4), (5), (6) and (7), where notations used are shown in Fig. 2. β is a coefficient defined as β=Vo/Ep, where Vo, E and p represent the accelerating voltage of ion, the strength of electric field and the distance between do and dn (refer to Fig. 2), respectively. The spreads X and Y of ion beam, in x and y directions can be obtained from these figures as functions of β and θ. For example, considering the the conditions Xmax =Ymax and θ≤135°, the relations among (X/a) max (= (Y/a) max), pβ/a and (s/a) min are then given, in Fig. 8. From this figure, optimum value for a (i. e. b) corresponding to any value of Xmax/smin can be odtained. Table 1 shows a typical example of electrode design under the above condition. Use of Figs. 3, 4, 5, and 6 also makes it easy to draw the path of ion beam.</description><issn>0559-8516</issn><issn>1880-9413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1962</creationdate><recordtype>article</recordtype><recordid>eNo9j01Lw0AURQdRMNRu_AVZK4nzmcwsS6pVKLipbof5bBPSRGZaof56p0a6eW_xzruXA8A9giVBBD1137ErWUkFvgIZ4hwWgiJyDTLImCg4Q9UtmMfYakgIhZBRloHHpYvtdsibnQqH3I8h34TR7MbWqj7_VOZ43OeLQfWnHxfuwI1XfXTz_z0DHy_Pm-a1WL-v3prFujCYCVzUxFuqsSeKmtSpamMdqr0W1FouoPKeas5V5TSqtVcMWmsdpIZjU2tYQTIDD1OuCWOMwXn5Fdq9CieJoDybyrOpZDKZJng5wV08qK27oEmnNb37Q5FgPOEITyO9Xc4meUs3kF8-SF9b</recordid><startdate>1962</startdate><enddate>1962</enddate><creator>TOMINAGA, Goroh</creator><creator>TUZI, Yutaka</creator><general>The Vacuum Society of Japan</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>1962</creationdate><title>Design Chart for Trochoidal Vacuum Analyzer</title><author>TOMINAGA, Goroh ; TUZI, Yutaka</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2592-73fd4b2f3a4c516a7cde17fb94dd890aff4b88a6eb17bfa50ddde04c82c7b0603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1962</creationdate><toplevel>online_resources</toplevel><creatorcontrib>TOMINAGA, Goroh</creatorcontrib><creatorcontrib>TUZI, Yutaka</creatorcontrib><collection>CrossRef</collection><jtitle>SHINKU</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TOMINAGA, Goroh</au><au>TUZI, Yutaka</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design Chart for Trochoidal Vacuum Analyzer</atitle><jtitle>SHINKU</jtitle><addtitle>J. Vac. Soc. Jpn.</addtitle><date>1962</date><risdate>1962</risdate><volume>5</volume><issue>12</issue><spage>492</spage><epage>502</epage><pages>492-502</pages><issn>0559-8516</issn><eissn>1880-9413</eissn><abstract>Design charts for trochoidal mass spectrometer as a vacuum analyzer are made for rational determination of the electrode dimension. The fundamental charts, Figs. 3, 4, 5 and 6, are calculated by Eqs. (4), (5), (6) and (7), where notations used are shown in Fig. 2. β is a coefficient defined as β=Vo/Ep, where Vo, E and p represent the accelerating voltage of ion, the strength of electric field and the distance between do and dn (refer to Fig. 2), respectively. The spreads X and Y of ion beam, in x and y directions can be obtained from these figures as functions of β and θ. For example, considering the the conditions Xmax =Ymax and θ≤135°, the relations among (X/a) max (= (Y/a) max), pβ/a and (s/a) min are then given, in Fig. 8. From this figure, optimum value for a (i. e. b) corresponding to any value of Xmax/smin can be odtained. Table 1 shows a typical example of electrode design under the above condition. Use of Figs. 3, 4, 5, and 6 also makes it easy to draw the path of ion beam.</abstract><pub>The Vacuum Society of Japan</pub><doi>10.3131/jvsj.5.492</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0559-8516 |
ispartof | Shinku, 1962/12/20, Vol.5(12), pp.492-502 |
issn | 0559-8516 1880-9413 |
language | eng |
recordid | cdi_crossref_primary_10_3131_jvsj_5_492 |
source | J-STAGE Free |
title | Design Chart for Trochoidal Vacuum Analyzer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A46%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstage_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20Chart%20for%20Trochoidal%20Vacuum%20Analyzer&rft.jtitle=SHINKU&rft.au=TOMINAGA,%20Goroh&rft.date=1962&rft.volume=5&rft.issue=12&rft.spage=492&rft.epage=502&rft.pages=492-502&rft.issn=0559-8516&rft.eissn=1880-9413&rft_id=info:doi/10.3131/jvsj.5.492&rft_dat=%3Cjstage_cross%3Earticle_jvsj1958_5_12_5_12_492_article_char_en%3C/jstage_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |