AN EFFICIENT NUMERICAL TECHNIQUE FOR SOLVING HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS

A third order parallel algorithm is proposed to solve one dimensional non-homogenous heat equation with integral boundary conditions. For this purpose, we approximate the space derivative by third order finite difference approximation. This parallel splitting technique is combined with Simpson'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advances in the theory of nonlinear analysis and its applications 2022-06, Vol.6 (2), p.157-167
Hauptverfasser: HAMMOUCH, Zakia, ZAHRA, Anam, REHMAN, Azız, MARDAN, Syed Ali
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 2
container_start_page 157
container_title Advances in the theory of nonlinear analysis and its applications
container_volume 6
creator HAMMOUCH, Zakia
ZAHRA, Anam
REHMAN, Azız
MARDAN, Syed Ali
description A third order parallel algorithm is proposed to solve one dimensional non-homogenous heat equation with integral boundary conditions. For this purpose, we approximate the space derivative by third order finite difference approximation. This parallel splitting technique is combined with Simpson's 1/3 rule to tackle the nonlocal part of this problem. The algorithm develop here is tested on two model problems. We conclude that our method provides better accuracy due to availability of real arithmetic.
doi_str_mv 10.31197/atnaa.846217
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_31197_atnaa_846217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_31197_atnaa_846217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1217-f453e63b87ec3ae5a9b8cb07be3e53d7ae67f0d1532b6437680f18effd377cab3</originalsourceid><addsrcrecordid>eNpNkE1LxDAYhIMouKx79J4_0DVfbdJj7abbQE3YbqoIQkm6CSh-0Xrx32t3PXiaOczM-_IAcI3RmmKc8xv39e7cWrCMYH4GFiQVPCEZE-f__CVYTdMLQogQhlmOF-Cp0FBWlSqV1Bbq7k62qiwaaGVZa7XrJKxMC_emuVd6C2tZWCh3XWGV0fBB2RpqoxszN25NpzdF-whLozdqDuyvwEV0r1NY_ekSdJW0ZZ00ZjtfSQb8-2wSWUpDRr3gYaAupC73YvCI-0BDSg_chYxHdMApJT5jlGcCRSxCjAfK-eA8XYLktDuMH9M0hth_js9vbvzuMeqPdPojnf5Eh_4AzHNRNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AN EFFICIENT NUMERICAL TECHNIQUE FOR SOLVING HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>HAMMOUCH, Zakia ; ZAHRA, Anam ; REHMAN, Azız ; MARDAN, Syed Ali</creator><creatorcontrib>HAMMOUCH, Zakia ; ZAHRA, Anam ; REHMAN, Azız ; MARDAN, Syed Ali</creatorcontrib><description>A third order parallel algorithm is proposed to solve one dimensional non-homogenous heat equation with integral boundary conditions. For this purpose, we approximate the space derivative by third order finite difference approximation. This parallel splitting technique is combined with Simpson's 1/3 rule to tackle the nonlocal part of this problem. The algorithm develop here is tested on two model problems. We conclude that our method provides better accuracy due to availability of real arithmetic.</description><identifier>ISSN: 2587-2648</identifier><identifier>EISSN: 2587-2648</identifier><identifier>DOI: 10.31197/atnaa.846217</identifier><language>eng</language><ispartof>Advances in the theory of nonlinear analysis and its applications, 2022-06, Vol.6 (2), p.157-167</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1217-f453e63b87ec3ae5a9b8cb07be3e53d7ae67f0d1532b6437680f18effd377cab3</citedby><cites>FETCH-LOGICAL-c1217-f453e63b87ec3ae5a9b8cb07be3e53d7ae67f0d1532b6437680f18effd377cab3</cites><orcidid>0000-0001-7349-6922 ; 0000-0002-4932-102X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>HAMMOUCH, Zakia</creatorcontrib><creatorcontrib>ZAHRA, Anam</creatorcontrib><creatorcontrib>REHMAN, Azız</creatorcontrib><creatorcontrib>MARDAN, Syed Ali</creatorcontrib><title>AN EFFICIENT NUMERICAL TECHNIQUE FOR SOLVING HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS</title><title>Advances in the theory of nonlinear analysis and its applications</title><description>A third order parallel algorithm is proposed to solve one dimensional non-homogenous heat equation with integral boundary conditions. For this purpose, we approximate the space derivative by third order finite difference approximation. This parallel splitting technique is combined with Simpson's 1/3 rule to tackle the nonlocal part of this problem. The algorithm develop here is tested on two model problems. We conclude that our method provides better accuracy due to availability of real arithmetic.</description><issn>2587-2648</issn><issn>2587-2648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkE1LxDAYhIMouKx79J4_0DVfbdJj7abbQE3YbqoIQkm6CSh-0Xrx32t3PXiaOczM-_IAcI3RmmKc8xv39e7cWrCMYH4GFiQVPCEZE-f__CVYTdMLQogQhlmOF-Cp0FBWlSqV1Bbq7k62qiwaaGVZa7XrJKxMC_emuVd6C2tZWCh3XWGV0fBB2RpqoxszN25NpzdF-whLozdqDuyvwEV0r1NY_ekSdJW0ZZ00ZjtfSQb8-2wSWUpDRr3gYaAupC73YvCI-0BDSg_chYxHdMApJT5jlGcCRSxCjAfK-eA8XYLktDuMH9M0hth_js9vbvzuMeqPdPojnf5Eh_4AzHNRNw</recordid><startdate>20220630</startdate><enddate>20220630</enddate><creator>HAMMOUCH, Zakia</creator><creator>ZAHRA, Anam</creator><creator>REHMAN, Azız</creator><creator>MARDAN, Syed Ali</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7349-6922</orcidid><orcidid>https://orcid.org/0000-0002-4932-102X</orcidid></search><sort><creationdate>20220630</creationdate><title>AN EFFICIENT NUMERICAL TECHNIQUE FOR SOLVING HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS</title><author>HAMMOUCH, Zakia ; ZAHRA, Anam ; REHMAN, Azız ; MARDAN, Syed Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1217-f453e63b87ec3ae5a9b8cb07be3e53d7ae67f0d1532b6437680f18effd377cab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HAMMOUCH, Zakia</creatorcontrib><creatorcontrib>ZAHRA, Anam</creatorcontrib><creatorcontrib>REHMAN, Azız</creatorcontrib><creatorcontrib>MARDAN, Syed Ali</creatorcontrib><collection>CrossRef</collection><jtitle>Advances in the theory of nonlinear analysis and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>HAMMOUCH, Zakia</au><au>ZAHRA, Anam</au><au>REHMAN, Azız</au><au>MARDAN, Syed Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AN EFFICIENT NUMERICAL TECHNIQUE FOR SOLVING HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS</atitle><jtitle>Advances in the theory of nonlinear analysis and its applications</jtitle><date>2022-06-30</date><risdate>2022</risdate><volume>6</volume><issue>2</issue><spage>157</spage><epage>167</epage><pages>157-167</pages><issn>2587-2648</issn><eissn>2587-2648</eissn><abstract>A third order parallel algorithm is proposed to solve one dimensional non-homogenous heat equation with integral boundary conditions. For this purpose, we approximate the space derivative by third order finite difference approximation. This parallel splitting technique is combined with Simpson's 1/3 rule to tackle the nonlocal part of this problem. The algorithm develop here is tested on two model problems. We conclude that our method provides better accuracy due to availability of real arithmetic.</abstract><doi>10.31197/atnaa.846217</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7349-6922</orcidid><orcidid>https://orcid.org/0000-0002-4932-102X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2587-2648
ispartof Advances in the theory of nonlinear analysis and its applications, 2022-06, Vol.6 (2), p.157-167
issn 2587-2648
2587-2648
language eng
recordid cdi_crossref_primary_10_31197_atnaa_846217
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title AN EFFICIENT NUMERICAL TECHNIQUE FOR SOLVING HEAT EQUATION WITH NONLOCAL BOUNDARY CONDITIONS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A22%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AN%20EFFICIENT%20NUMERICAL%20TECHNIQUE%20FOR%20SOLVING%20HEAT%20EQUATION%20WITH%20NONLOCAL%20BOUNDARY%20CONDITIONS&rft.jtitle=Advances%20in%20the%20theory%20of%20nonlinear%20analysis%20and%20its%20applications&rft.au=HAMMOUCH,%20Zakia&rft.date=2022-06-30&rft.volume=6&rft.issue=2&rft.spage=157&rft.epage=167&rft.pages=157-167&rft.issn=2587-2648&rft.eissn=2587-2648&rft_id=info:doi/10.31197/atnaa.846217&rft_dat=%3Ccrossref%3E10_31197_atnaa_846217%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true